Hyperspectral spaceborne, airborne and ground measurements campaign on Mt. Etna: multi data acquisitions in the frame of Prisma Mission (ASI-AGI Project n. I/016/11/0)
Hyperspectral spaceborne, airborne and ground measurements campaign on Mt. Etna: multi data acquisitions in the frame of Prisma Mission (ASI-AGI Project n. I/016/11/0)

La campagna di misure aeree, da satellite e di terra sull’Etna: acquisizione “multi-data” nell’ambito della missione PRISMA (progetto ASI-AGI n. I/016/11/0)

Laura Colini¹, Claudia Spinetti¹, Stefania Amici¹, Maria Fabrizia Buongiorno⁴, Tommaso Caltabiano², Fawzi Doumaz¹, Massimiliano Favalli³, Salvatore Giammanco², Ilaria Isola³, Alessandro La Spina², Valerio Lombardo¹, Francesco Mazzarini³, Massimo Musacchio¹, Marco Neri², Giuseppe Salerno², Malvina Silvestri¹, Sergio Teggi⁴, Valentina Sarli⁵, Paolo Cafaro⁶, Marco Mancini⁶, Salvatore D’Andrea⁶, Gabriele Curci⁷, Cristina Ananasso⁸

¹INGV (Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti)
²INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo)
³INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa)
⁴Università di Modena e Reggio Emilia
⁵CGIAM (Centro di Geomorfologia Integrata dell’Area del Mediterraneo - Potenza)
⁶Comando Generale del Corpo delle Capitanerie di Porto – Guardia Costiera (Roma)
⁷Università degli Studi dell’Aquila (CETEMPS - Dipartimento Scienze Fisiche e Chimiche)
⁸Agenzia Spaziale Italiana

in copertina Mosaico delle immagini aeree riprese dalla camera ad alta risoluzione Digicam H-39 della zona sommitale dell’Etna. Nel riquadro, l’immagine in temperatura acquisita nei canali IR (particolare)
Hyperspectral spaceborne, airborne and ground measurements campaign on Mt. Etna: multi data acquisitions in the frame of Prisma Mission (ASI-AGI Project n. I/016/11/0)

In the frame of the Italian Space Agency (ASI) Hyperspectral Mission PRISMA (Precursore IperSpettrale della Missione Applicativa), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is coordinating the scientific project ASI-AGI (Analisi Sistemi Iperspettrali per le Applicazioni Geofisiche Integrate) to develop specific algorithms and products for various geophysical applications. The data validation and calibration activities have been focused on three active volcanic areas located in Sicily: Mt. Etna, Paternò and Ciclopi islands. From June 23 until 27, 2012 INGV and the project partners have organized an airborne and ground campaign over the selected test sites covering different surface targets. The airborne data were acquired by using a SPECIM sensor working in the VNIR-SWIR range and jointed to an airborne laser scanner and a thermal camera. The ground campaign has allowed to collect several datasets using two portable spectroradiometer (Fieldspec), two portable Fourier Transform InfraRed spectrometer (FTIR), a ground laser scanner, a thermal camera and a TIR thermometer. Moreover, in order to acquire local atmospheric parameters a sun photometer and a meteorological station have been used as well as further meteorological information have been furnished by CETEMPS L’Aquila University. During the airborne and ground campaign the contemporaneous acquisitions of Hyperion and ASTER have allowed to extract a suitable data set that will be used to simulate PRISMA data and to develop and test the proposed algorithms for a large number of applications regarding for example land cover and agriculture, water quality monitoring, surface hydrology, urban areas monitoring, geology, security, desertification, territory monitoring to support to natural hazard management, atmosphere monitoring for its optical and spectral characterization, carbon cycle.

Nell’ambito della Missione Iperspettrale PRISMA (Precursore IperSpettrale della Missione Applicativa) dell’Agenzia Spaziale Italiana (ASI), l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) sta coordinando il progetto scientifico ASI-AGI (Analisi Sistemi Iperspettrali per le Applicazioni Geofisiche Integrate) per sviluppare algoritmi e prodotti specifici per diverse applicazioni geofisiche. Le attività di validazione e calibrazione dei dati sono state focalizzate su tre aree vulcaniche attive individuate in Sicilia: Mt. Etna, area di Paternò e isole dei Ciclopi. Dal 23 al 27 giugno 2012, l’INGV ed i partner del progetto hanno organizzato una campagna di volo e di terra sui siti di prova scelti coprendo diverse tipologie di superfici. I dati aerei sono stati acquisiti utilizzando un sensore SPECIM operante nell’intervallo VNIR-SWIR e collegato ad un laser scanner aereo e ad una camera termica. La campagna di terra ha permesso di raccogliere numerosi datasets mediante l’utilizzo di due spetroradiometri portatili (Fieldspec), di due spettrometri portatili FTIR, di un laser scanner a terra, di una camera termica e di un termometro TIR. Inoltre, al fine di acquisire i parametri atmosferici locali, sono stati utilizzati un fotometro solare e una stazione meteorologica, oltre alle informazioni meteorologiche fornite dal CETEMPS dell’Università dell’Aquila. Durante la campagna aerea e di terra le acquisizioni contemporanea di Hyperion e ASTER hanno permesso di estrarre un set di dati che permetteranno di simulare i dati PRISMA e di sviluppare e testare gli algoritmi proposti per un gran numero di applicazioni quali per esempio land cover e agricoltura, monitoraggio della qualità delle acque, idrologia superficiali, monitoraggio delle aree urbane, geologia, sicurezza, desertificazione, monitoraggio del territorio a supporto della gestione dei rischi naturali, monitoraggio dell’atmosfera per la caratterizzazione spettrale e ottica, ciclo del carbonio.
Introduction

Data acquired by imaging spectrometers and multispectral imagers are able to provide important information in geophysical processes as volcanic activity during both quiescent and active periods. In particular, the infrared region of the EM spectrum is suitable for investigations of the compositions of volcanic plumes and clouds and to characterize the thermal properties and conditions of volcanic surfaces. Thermal anomalies in both quiescent and active periods could be monitored using SWIR-TIR images. VIS-TIR bands could be used to analyze the mineralogical composition and weathering processes of lava flows and other volcanic products since they are usually subject to rapid weathering in humid climates and, therefore, the vegetation regrowth on new volcanic deposits (starting from lichens) is an important indication of the age of lava flows thus it represents an important element in risk analysis procedures. All these studies involve the use of high spatial and spectral resolution. EO-1-Hyperion space sensor has furnished hyperspectral images worldwide and has demonstrated the importance of imaging spectrometers to monitor volcanic phenomena especially in conjunction with ASTER images that are able to cover the TIR spectral range. The HyspIRI mission represents a fundamental step forward in integrating VIS-TIR imagers to benefit a large number of scientific studies and operational activities. In the frame of the Italian Space Agency (ASI) Hyperspectral mission PRISMA, INGV is coordinating scientific studies for geophysical applications. Considering the spectral range covered by the PRISMA sensor (0.4-2.5µm, 30 m spatial resolution) and the contemporaneous acquisition of panchromatic camera at 5 m spatial resolution, a number of products are being developed for scientific applications in particular they will regard the thermal structure of lava flows and forest fires, volcanic gas emission (CO₂, CH₄) and surface material classification based on spectral analysis and development of data fusion techniques. Moreover the proposed activities will include systematic measurements on a calibration/validation test sites as Mt. Etna and a large calibration site located in the Algeria desert. This paper focuses on the detailed description of the campaign with particular regard to the measurements performed and to the instruments used.

1. PRISMA mission characteristics

PRISMA (Precursore IperSpettrale della Missione Applicativa) is a pre-operative small Italian hyperspectral mission aiming to monitor and characterize the earth surface through the combination of an hyperspectral and a panchromatic sensor (Figure 1). In this context PRISMA target is to qualify the technology, contribute to develop applications and provide products to institutional and scientific users for environmental observation and risk management.

1.1 Mission objectives

- In orbit qualification of an Italian hyperspectral/panchromatic camera (Figure 2);
- implementation of a pre-operative mission, with demonstrative/technological features;
- validation of end-to-end data processing able to develop new applications based on high spectral resolution images for Earth observation and to manage the environmental risks;
- capitalization of ASI heritage, considering the Hypseo mission and the Italian-Canadian Joint Hyperspectral Mission (JHM) studies.

Figure 1 ASI PRISMA mission characteristics.
Figura 1 Caratteristiche della missione ASI-PRISMA.
ASI has given responsibility for the performance of these tasks to the Raggruppamento Temporaneo d’Imprese (RTI) (Temporary Industrial Group) made up of Carlo Gavazzi Space, S.p.A as the procurer and Selex-Galileo Avionica S.p.A and Oerlikon Contraves Rheinmetall Italia S.p.A as principal contractors. This group manages a team that involves the participation of other important Italian industries working in the sector. The contract will assign the contractor the “end-to-end” responsibility for the development and production of the system to the in-orbit commissioning (Phase B2/C/D/E1).

1.2 ASI-AGI Project
In the latest decades the technological development of imaging spectrometers, both on airborne and spaceborne platforms, has promoted a great number of applications. In particular, several studies have analyzed the interaction between Earth surface and atmosphere. Because of the increasing interest in developing applications, the Italian Space Agency (ASI) is carrying on the Hyperspectral mission PRISMA (Precursore IperSpettrale della Missione Applicativa) that will ensure the continuity of NASA and ESA missions HYPERION and CHRIS PROBA, respectively. PRISMA will first cover the Euro-Mediterranean regions. In 2009 ASI sent out a call for

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Name of the institute</th>
<th>PRISMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of algorithms and products for applications in agriculture and land monitoring to support the PRISMA mission (SAP 4 PRISMA)</td>
<td>Istituto di Metodologie per l’Analisi Ambientale IMAA CNR</td>
<td>Vincenzo Cuomo</td>
</tr>
<tr>
<td>Synergistic use of PRISMA products with high resolution meteor-chemistry simulations and their validation from ground and satellites (PRIMES)</td>
<td>CETEMPS - Univ. de L’Aquila</td>
<td>Guido Visconti</td>
</tr>
<tr>
<td>Hyperspectral systems analysis for integrated geophysical applications (ASl-AGI)</td>
<td>Istituto Nazionale di Geofisica e Vulcanologia (INGV)</td>
<td>Fabrizia Buongiorno</td>
</tr>
<tr>
<td>Advanced methodologies for analysis, integration and optimization of PRISMA level 1 and 2 products - OPTIMA -</td>
<td>Istituto di Fisica Applicata Nello Carrara (IFAC - CNR)</td>
<td>Ivan Pippi</td>
</tr>
<tr>
<td>Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission (CLAM PHYM)</td>
<td>Institute of Marine Sciences (ISMAR - CNR)</td>
<td>Luigi Alberotanza</td>
</tr>
</tbody>
</table>

Table 1 Showing the PRISMA scientific studies funded by ASI.

Tabella 1 Studi scientifici su PRISMA finanziati da ASI.
proposal to support scientific studies (Table 1) and to promote the PRISMA science team, and a number of applications, ASI-AGI (Analisi Sistemi Iperspettrali per le Applicazioni Geofisiche Integrate) is one of the selected projects. The projects started in April 2011 and they will be closed in April 2015 in order to be aligned to the development phase of PRISMA mission whose launch is scheduled for 2016.

The ASI AGI project focuses on geophysical and geological applications such as improving the scientific understanding of natural phenomena as volcanic activity and forest fires and developing innovative techniques based on PRISMA image spectroscopy characteristics combining an hyperspectral and a panchromatic data.

ASI-AGI project is organized in 4 main tasks and focuses on the objectives listed below:

- optimize the hyperspectral and panchromatic contribute to study geophysical phenomena;
- consolidate the use of hyperspectral data in a number of geophysical applications by developing specific algorithms;
- develop a PRISMA data simulator to test the specific algorithms during the developing phases of the PRISMA mission;
- improve the atmospheric correction procedures for hyperspectral data to achieve more precise estimation of the ground radiance and reflectance;
- organize CAL/VAL (calibration/validation) activities including the definition of a vicarious test site in Algeria;
- support the Italian Space Agency to verify the scientific and technical requirements of the PRISMA mission.

The ASI-AGI project team is composed by the following institutions:

- **Istituto Nazionale di Geofisica e Vulcanologia** (INGV), project coordinator and responsible of specific algorithms development for geophysical applications.
- **Dipartimento di Ingegneria Meccanica e Civile dell’Università degli Studi di Modena e Reggio Emilia** (DIMEC), responsible of the Pan Sharpening techniques and atmospheric and topographic correction procedures.
- **Centro di Geomorfologia Integrata per l’Area del Mediterraneo** (CGIAM), responsible for the airborne data acquisition and part of the CAL/VAL activities.

### 2. ASI-AGI Sicily 2012 campaign overview

The CAL/VAL activities of ASI-AGI project are based on 4 specific goals:

- To organize an airborne campaign on Mt. Etna area which is the main test site for ASI-AGI project and acquire a suitable hyperspectral data set to simulate the PRISMA data and test the developed algorithms;
- To get possibly simultaneous Hyperion and ASTER data in order to use the acquired dataset to simulate HyspIRI data;
- To organize a contemporary in situ campaign to acquire surface and atmospheric parameters and validate the airborne data and complete a spectral library for Mt. Etna different lava flows;
- To define a vicarious test site in North Africa in the Algerian desert.

On June 2012 a campaign for hyperspectral images acquisition has been organized, instruments carried by aerial platform and portable instruments have been used for field measurements. A spectroradiometer FieldSpec Pro has

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.06.2012</td>
<td>Logistic activities Ground instrument TEST and FieldSpec measurements</td>
<td>MILO</td>
</tr>
<tr>
<td>24.06.2012</td>
<td>Start ground measurements FieldSpec ETNA Set up sun-photometer PATERNÒ Site inspection</td>
<td>BRONTE</td>
</tr>
<tr>
<td>25.06.2012</td>
<td>Thermal Camera, Unilogger, FTIR (Pian del Lago) FieldSpec (Strada Forestale and North Etna)</td>
<td>ETNA</td>
</tr>
<tr>
<td>26.06.2012</td>
<td>FieldSpec, Unilogger, Laser Scanning</td>
<td>PATERNÒ</td>
</tr>
<tr>
<td>27.06.2012</td>
<td>FieldSpec</td>
<td>FORNAZZE</td>
</tr>
</tbody>
</table>

**Table 2 Activities planned in the different test sites.**

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.06.2012</td>
<td>Logistic activities Ground instrument TEST and FieldSpec measurements</td>
<td>MILO</td>
</tr>
<tr>
<td>24.06.2012</td>
<td>Start ground measurements FieldSpec ETNA Set up sun-photometer PATERNÒ Site inspection</td>
<td>BRONTE</td>
</tr>
<tr>
<td>25.06.2012</td>
<td>Thermal Camera, Unilogger, FTIR (Pian del Lago) FieldSpec (Strada Forestale and North Etna)</td>
<td>ETNA</td>
</tr>
<tr>
<td>26.06.2012</td>
<td>FieldSpec, Unilogger, Laser Scanning</td>
<td>PATERNÒ</td>
</tr>
<tr>
<td>27.06.2012</td>
<td>FieldSpec</td>
<td>FORNAZZE</td>
</tr>
</tbody>
</table>

**Table 2 Attività pianificate nei diversi siti test.**
allowed to acquire spectra of lavic materials in order to implement the spectral library of Etnan lava outcrops. INGV sections of Rome, Catania and Pisa and CGIAM company have participated to the campaign. During the campaign, satellite data have been acquired and released thanks to agreements with NASA-JPL and NASA-GODDARD. The activities carried on during the campaign and the instruments used in the different test sites are listed in Table 2. Due to the restriction in the project duration, the data validation and calibration activities were focused on active volcanic areas, with the following test site selection located in Sicily (Italy): Mt. Etna area, Paternò “Salinelle” area and Ciclopi islands.

3. Airborne campaign

The airborne campaign was carried out over the three selected test sites in the period 25-26 June 2012 in order to acquire hyperspectral and Lidar data according to the flight line scheduling planned by INGV and CGIAM. The campaign was preceded by calibration and test flights performed during the two previous days. The airborne multi-sensor platform used for the airborne surveys includes a hyperspectral system, a laser scanner, a thermal camera and a digital camera.

3.1 Airborne flight lines scheduling

The scheduling of the flight lines has been planned in advance taking into account different criteria such as for example the existence of flight lines executed in previous campaigns during past missions, so the new campaign covers also areas not investigated before.

3.1.1 Calibration flight on 23th June, 2012

A calibration flight was performed over the airport of Perugia in order to determine the boresight angles and to test the functionality of the sensors. The calibration flight was performed along flight lines acquired in ‘cross formations’ and parallel lines with a sizeable overlap, at two different altitudes (700 m a.g.l. and 1400 m a.g.l.) over an area with ground control points. Figure 3 shows the flight lines at the two different altitudes.

3.1.2 Test flight over the Mt. Etna on 24th June 2012

The test flight over Mt. Etna was intended to verify the acquisition parameters for hyper-spectral data (e.g. integration time, frame rate, flight speed) and the flight operating conditions for the altitude needed. The flight was performed at an altitude of 4500 m a.s.l.. The flight lines are showed in Figure 4.

3.1.3 Airborne survey over the Mt. Etna on 25th June 2012

Airborne survey over on Mt. Etna was executed on 25th June, 2012. The data were acquired along eight flight lines specified in Table 3, at the about 4500 m a.s.l., with an average velocity of about 110 knots, from about 9 a.m. to about 11 a.m. (local time). These covered the volcano craters as well as other points of interest. The data acquired are hyperspectral, thermal and optical. Figure 5 shows the corresponding hyperspectral swaths.
3.1.4 Airborne survey over the Paternò area and Ciclopi islands on 26th June, 2012

Airborne survey over Paternò area and Ciclopi islands was totally performed along thirteen flight lines, on the morning of 26th June 2012.

The mission started on the Cyclops islands in order to have a low sun elevation and therefore minimize sun glint. The data were acquired along three flight lines 18, 2 and 19, at 1000 m a.g.l., with an average velocity of about 110 knots, from about 6:45 a.m. to about 7 a.m (local time).

Subsequently, the data were acquired over Paternò area along the ten remaining flight lines (from 8 to 17) at 1000 m a.g.l., with an average velocity of about 110 knots, from about 7:15 a.m. to about 8:15 a.m.

The data acquired over both areas are hyperspectral, thermal, LiDAR and optical.

The flight lines with the coordinates of the relative start and end points and the acquisition start time are specified in Table 4.

Figures 6 and 7 show the corresponding hyperspectral swaths on Ciclopi islands and Paternò area.

3.2 Characteristics of CGIAM airborne system

The airborne multi-sensor platform used can operate in different configuration depending on number and type of sensors to be used and is installable both helicopter and fixed wings aircraft as each mission requires (Figure 8).

All the sensors are placed on a special structure with forced slots that allows an extreme stability in the relative positioning. They are synchronized via hardware and software with the Navigation System which consists of a Ground Position System (GPS) and Inertial Navigation System (INS) able to estimate the position and the attitude of all the sensors, allowing to manage and control flight parameters and sensors in real time and to collect all the useful information to geo-rectify the acquired data.

In this mission, the configuration consisted of a full waveform laser scanner, an high resolution digital camera, a hyper-spectral system of two sensors operating in VNIR and SWIR regions and a thermal camera. The aircraft used was a P68.

In the following paragraphs, the main characteristics of the sensors and the instrumentation are described.

3.3 Airborne components

The airborne system includes the following components mounted within aircraft:

- The group of the sensors (hyper-spectral system, laser scanner, thermal camera, digital camera).
- A rack for computers & storage units.
- A monitor panel.
While, the GPS receiver and a fiber optic sensor (FODIS) measuring downwelling light are mounted on the aircraft roof. The group of the sensors whose main characteristics are described singly in the following sections, are fixed together an inertial measurement unit (IMU) on a non-deformable rigid aluminum plate (Figure 9).

The mounting of the group of sensors and the Rack for Computers & Storage units on fixed-wing aircraft is made fixing a MDF (medium density fiberboard) and aluminum support respectively to the cabin floor using the equipped fixing points. On these supports are installed dampers in connection with the aluminum plate and the rack.

The Rack for Computers & Storage units includes computers with storage units for every sensors and the following systems:

- The AEROControl system to determine position (x, y, z) and attitude (roll, pitch, heading) of the sensors with high precision, to give real-time navigation parameters to Computer Controlled Navigation System (CCNS) and to store the navigation data for the following step.

### Table 4

<table>
<thead>
<tr>
<th>Flight Line at 1000 m agl</th>
<th>Start Point</th>
<th>End Point</th>
<th>Acquisition Start time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lon</td>
<td>Lat</td>
<td>Lon</td>
</tr>
<tr>
<td>18</td>
<td>15.2082</td>
<td>37.6078</td>
<td>15.1408</td>
</tr>
<tr>
<td>2</td>
<td>15.2112</td>
<td>37.6058</td>
<td>15.1438</td>
</tr>
<tr>
<td>19</td>
<td>15.2140</td>
<td>37.6038</td>
<td>15.1466</td>
</tr>
<tr>
<td>10</td>
<td>14.9179</td>
<td>37.3100</td>
<td>14.8440</td>
</tr>
<tr>
<td>11</td>
<td>14.8473</td>
<td>37.5845</td>
<td>14.9212</td>
</tr>
<tr>
<td>12</td>
<td>14.9244</td>
<td>37.3142</td>
<td>14.8505</td>
</tr>
<tr>
<td>13</td>
<td>14.8538</td>
<td>37.5887</td>
<td>14.9277</td>
</tr>
<tr>
<td>14</td>
<td>14.9309</td>
<td>37.3184</td>
<td>14.8570</td>
</tr>
<tr>
<td>15</td>
<td>14.8602</td>
<td>37.5929</td>
<td>14.9341</td>
</tr>
<tr>
<td>16</td>
<td>14.9374</td>
<td>37.3226</td>
<td>14.8635</td>
</tr>
<tr>
<td>17</td>
<td>14.8667</td>
<td>37.5971</td>
<td>14.9406</td>
</tr>
<tr>
<td>8</td>
<td>14.8958</td>
<td>37.3759</td>
<td>14.8626</td>
</tr>
<tr>
<td>9</td>
<td>14.8477</td>
<td>37.5709</td>
<td>14.8793</td>
</tr>
</tbody>
</table>

**While, the GPS receiver and a fiber optic sensor (FODIS) measuring downwelling light are mounted on the aircraft roof. The group of the sensors whose main characteristics are described singly in the following sections, are fixed together an inertial measurement unit (IMU) on a non-deformable rigid aluminum plate (Figure 9).**

The mounting of the group of sensors and the Rack for Computers & Storage units on fixed-wing aircraft is made fixing a MDF (medium density fiberboard) and aluminum support respectively to the cabin floor using the equipped fixing points. On these supports are installed dampers in connection with the aluminum plate and the rack.

The Rack for Computers & Storage units includes computers with storage units for every sensors and the following systems:

- The AEROControl system to determine position (x, y, z) and attitude (roll, pitch, heading) of the sensors with high precision, to give real-time navigation parameters to Computer Controlled Navigation System (CCNS) and to store the navigation data for the following step.
of data processing. The AEROControl integrates the 24-channel L1/L2 GPS receiver working at 2 Hz and the Inertial Measurement Unit (IMU-IId) built by optical fiber gyroscopes and accelerometers with a 256Hz sampling frequency.

- The Computer Controlled Navigation System (CCNS) that is a guidance, positioning and sensor management system using AEROControl data. It consists of a Central Computer Unit (CCU), a command and display unit.

The monitor panel represented in Figure 10 groups the control and display units of every sensor and the monitor of CCNS. The panel is mounted by means of a dedicated clamp or support (Figure 11).

---

**Figure 8** The multi-sensors platform installed on helicopter (on the top) and fixed wings aircraft (on the bottom).

**Figure 9** The multi-sensor platform with the group of sensors mounted on an aluminum plate.

**Figure 10** Monitor panel during a airborne survey.

**Figure 11** Rack for Computers & Storage units installed on aircraft.

---

**Hyperspectral camera**

The hyperspectral system is a pushbroom scanning system that consists of two spectrophotometers operating in VNIR (from 0.4 m to 1.0 m) and SWIR (from 1.0 m to 2.5 m) spectral ranges (see Figure 13 and Table 5).

The VNIR sensor is an assembled system whose main parts are a spectrometer, the ImSpector V10E by Specim, and a CCD camera of image acquisition. Whereas the SWIR sensor is the ImSpectorN25E by Specim (Figure 12).
They are placed inside a rigid box (Figure 14) that can be mounted both on the airborne platform and on a support equipped with a device for vertical and horizontal movement. The system is connected to a computer that permits to adjust the image acquisition both closing of the shutters for the dark acquisition (electronic noise) and by setting various parameters as the integration time and frame rate. Moreover, the hyper-spectral system is equipped with the fiber optic downwelling irradiance sensor (FODIS) for VNIR data.

**Laser Scanner**

The laser scanner is a latest generation LiDAR sensor, during the campaign the model Riegl LMSQ560 has been used, it allows the Full Waveform Analysis; and is able to record the Full Waveform by storing all the target echoes, instead of 2 (first and last echoes) or 4 discrete echoes usually collected by the most common laser altimeters. It is worth nothing that the “Full waveform” mode, thanks to the ability to record the whole multiple echoKs waveform, assures the penetration of even the thick vegetation so as to obtain accurate DTMs in the presence of canopy. This laser scanner is equipped by a polygonal rotating mirror which sends signals to the ground with a frequency settable up to 240.000 Hz, with a maximum scanning angle of 60 degrees and a beam divergence of 0.5 mrad. It is important to point out that the system does not pose any risks to human health since it falls into the Eye Safety Class 1, which makes the instrument usable in many application fields and in many different locations. The laser beam is sent to the ground with a specific frequency in the near-infrared band and the echoes are stored and 16-bit sampled (Table 6).
The digital thermal camera is the DigiTHERM for digital aerial thermography. It’s a uncooled microbolomer FPA-detector that delivers thermal images of 640x480 pixels. With a thermal resolution of 0.05K the standard temperature range is -40°C to 120°C (Table 7).

**Table 6 Technical characteristics of the Laser Scanner.**

<table>
<thead>
<tr>
<th>LASER CHARACTERISTICS</th>
<th>VNIR</th>
<th>SWIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>1550 nm</td>
<td></td>
</tr>
<tr>
<td>Pulse length</td>
<td>3.5 ns</td>
<td></td>
</tr>
<tr>
<td>Beam divergence</td>
<td>0.5 mrad</td>
<td></td>
</tr>
<tr>
<td>Type/class laser</td>
<td>Class 1</td>
<td></td>
</tr>
<tr>
<td>Eyesafe range</td>
<td>0 m</td>
<td></td>
</tr>
</tbody>
</table>

**ACQUISITION METHODOLOGY**

- Scanning Method: Polygonal rotating mirror
- Mirror rotation speed: 5 - 160 KHz
- Pulse Frequency: 40 - 240 KHz
- Maximum scanning angle: 60°deg
- Maximum Number of echoes/pulses recorded: unlimited
- Digitizer sampling Frequency: 1 GHz
- Measurement: Full Waveform
- Signal intensity dynamic Range: 16 bit

**PRECISION AND RESOLUTION**

- Precision range (2 sigma): 2 cm
- Precision elevation (2 sigma): 6 cm @ 1,000 m AGL
- Overall planimetric precision (2 sigma): 0.30 cm @ 1,000 m AGL
- Max. # points/m²: 156 points @ 50 m AGL, 30 Kts

**Table 7 Technical characteristics of the Thermal Camera.**

<table>
<thead>
<tr>
<th>THERMAL CAMERA</th>
<th>Specim</th>
<th>Specim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>DigiTHERM</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Uncooled microbolometer</td>
<td></td>
</tr>
<tr>
<td>Beam divergence</td>
<td>0.5 mrad</td>
<td></td>
</tr>
<tr>
<td>Pixel thermal image</td>
<td>640 (H) x 480 (V) pixel</td>
<td></td>
</tr>
<tr>
<td>Spectral range</td>
<td>7.5 - 14 μm</td>
<td></td>
</tr>
<tr>
<td>Standard temperature range</td>
<td>-40°C - +120°C</td>
<td></td>
</tr>
<tr>
<td>Thermal resolution of NETD</td>
<td>&lt; 50mK</td>
<td></td>
</tr>
<tr>
<td>Measurement accuracy</td>
<td>±1.5 K otherwise ± 2 K</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-15 - +50°C</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 95%, non-condensing</td>
<td></td>
</tr>
</tbody>
</table>

**Thermal camera**

The digital thermal camera is the DigiTHERM for digital aerial thermography. It’s a uncooled microbolomer FPA-detector that delivers thermal images of 640x480 pixels. With a thermal resolution of 0.05K the standard temperature range is -40°C to 120°C (Table 7).

**Digital Camera**

The Digital Camera is the DigiCAM with a lens of 50mm, that enables acquisition of digital aerial photography. Among the main characteristics it is worth mentioning the high resolution (39 Megapixel), the possibility to record frames in the Color-Visible (VIS) or in the Color-Infrared (CIR), with the use of special filters (Table 8).

**4. Satellite data Acquisitions**

The Etna 2012 campaign has been organized taking into account the 2 scheduled reference satellite acquisitions: TERRA ASTER and EO1-HYPERION. Both satellite data will be used to improve the simulation of PRISMA data based on the airborne multi-sensor platform acquired data. The reference satellite acquisition have been requested at NASA JPL ASTER group and at Goddard Space Flight Center. They are shown in Table 9. Respect to the scheduling shown in Table 8, TERRA-ASTER daytime image of June 25 and EO1 HYPERION images of June 23, 26 and 28 have been acquired (Figure 15). Only the image acquired on June 26 is cloud free. All the images have been released by providers.
4.1 ASTER

The satellite platform TERRA launched by NASA as part of the EOS (Earth Observing System) is equipped with ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), an instrument developed by a cooperation of NASA, the Japan’s Ministry of Economy, Trade and Industry, and ERSDAC (Earth Remote Sensing Data Analysis Center).

ASTER is constituted by three different subsystems, operating in the visible and near infrared (VNIR), short wave infrared (SWIR) and thermal infrared (TIR) regions of the electromagnetic spectrum. Each subsystem is provided with a different telescope. The main instrument characteristics are summarized in Table 10, ASTER data are collected upon request on specific scenes.

**Table 8** Technical characteristics of the Digital Camera.

<table>
<thead>
<tr>
<th>Brand</th>
<th>DigiCAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>39 Mpixel</td>
</tr>
<tr>
<td>CCD sensor dimension</td>
<td>36.80 x 49.07 mm</td>
</tr>
<tr>
<td>Pixel size</td>
<td>6.8 μm</td>
</tr>
<tr>
<td>Filter array</td>
<td>Interchangeable Color (RGB) or Color Infrared (CIR)</td>
</tr>
<tr>
<td>Lens</td>
<td>50 mm</td>
</tr>
<tr>
<td>Image data format</td>
<td>TIFF, JPEG, DNG (Optional 8 or 16 bit)</td>
</tr>
</tbody>
</table>

**Table 9** Scheduling of satellite/sensor acquisition.

<table>
<thead>
<tr>
<th>Satellite/sensor</th>
<th>DAY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRA/ASTER</td>
<td>25/06/2012 9:45 GMT</td>
</tr>
<tr>
<td>EO1 HYPERION</td>
<td>2012-06-23T09:14:00Z prioritaire</td>
</tr>
<tr>
<td></td>
<td>2012-06-26T09:28:00Z prioritaire</td>
</tr>
<tr>
<td></td>
<td>2012-06-28T09:05:00Z prioritaire</td>
</tr>
<tr>
<td></td>
<td>2012-07-01T09:19:00Z</td>
</tr>
<tr>
<td></td>
<td>2012-07-06T09:11:00Z</td>
</tr>
</tbody>
</table>

**Figure 15** TERRA-ASTER image (left) acquired on June 26, 2012; and EO1-Hyperion image (right) acquired on June 28, 2012.

**Figura 15** Immagine TERRA-ASTER (a sinistra) acquisita il 26 giugno 2012 e immagine EO1-Hyperion (a destra) acquisita il 28 giugno 2012.
Spaceborne, airborne and ground campaign on Mt. Etna
Laura Colini et al., Quaderni di Geofisica, No. 119, Aprile 2014

4.2 Hyperion
During the field measurements campaign Hyperion acquisitions have been requested in the frame of a collaboration between INGV, USGS and NASA. Hyperion is an imaging sensor on board of the Earth Observing (EO-1) platform. The EO-1 satellite was launched on 21th November 2000, and is positioned in a polar orbit at 705 Km of altitude with a 16-day repeat cycle. The orbit is slightly to the east of Landsat-7 passing over the same ground-track one minute later. EO-1 joins a ‘morning constellation’ of Earth observing satellites, including SAC-C and Terra, all examining electromagnetic radiation along the same ground track with different swath widths and with a range of spatial and spectral resolution.

The three primary instruments on board are Hyperion, ALI (Advanced Land Imager) and Leisa-AC (Linear Etalon Imaging Spectrometer Array–Atmospheric Corrector). ALI is similar to Landsat 7 with ten spectral bands with a spatial resolution of 30 m for the multispectral bands and 10 m for the panchromatic band. The Hyperion is the first space hyperspectral imaging spectrometer. It collects 220 unique spectral channels ranging from 0.357 to 2.576 mm with a 10 nm bandwidth. The instrument operates in a pushbroom mode, with a spatial resolution of 30 m for all bands. The standard scene width is 7.7 km. Standard scene length is 42 km, with an optional increased scene length of 185 km. In the period

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>VNIR</th>
<th>SWIR</th>
<th>TIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Range</td>
<td>Band 1: 0.52-0.60 μm</td>
<td>Band 4: 1.600-1.700 μm</td>
<td>Band 10: 8.125-8.475 μm</td>
</tr>
<tr>
<td></td>
<td>Nadir looking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band 2: 0.63-0.69 μm</td>
<td>Band 5: 2.145-2.185 μm</td>
<td>Band 11: 8.475-8.825 μm</td>
</tr>
<tr>
<td></td>
<td>Nadir looking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band 3: 0.76-0.86 μm</td>
<td>Band 6: 2.185-2.225 μm</td>
<td>Band 12: 8.925-9.275 μm</td>
</tr>
<tr>
<td></td>
<td>Nadir looking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band 4: 0.76-0.86 μm</td>
<td>Band 7: 2.235-2.285 μm</td>
<td>Band 13: 10.25-10.95 μm</td>
</tr>
<tr>
<td></td>
<td>Backward looking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band 5: 0.76-0.86 μm</td>
<td>Band 8: 2.295-2.365 μm</td>
<td>Band 14: 10.95-11.65 μm</td>
</tr>
<tr>
<td></td>
<td>Nadir looking</td>
<td>Band 9: 2.360-2.430 μm</td>
<td></td>
</tr>
<tr>
<td>Ground Resolution</td>
<td>15 m</td>
<td>30 m</td>
<td>90 m</td>
</tr>
<tr>
<td>Data Rate(Mbit/s)</td>
<td>62</td>
<td>23</td>
<td>4.2</td>
</tr>
<tr>
<td>Cross-track Pointing (deg)</td>
<td>±24</td>
<td>±8.55</td>
<td>±8.55</td>
</tr>
<tr>
<td>Cross-track Pointing (Km)</td>
<td>±318</td>
<td>±116</td>
<td>±116</td>
</tr>
<tr>
<td>Swath Width (Km)</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Si</td>
<td>PtSi-Si</td>
<td>HgCdTe</td>
</tr>
<tr>
<td>Quantization (bits)</td>
<td>8</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

4.2.1 Hyperion

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ALI</th>
<th>Hyperion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Range</td>
<td>0.4-2.4 μm</td>
<td>0.4-2.4 μm</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Swath Width</td>
<td>36 Km</td>
<td>7.6 Km</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>Variable</td>
<td>10 nm</td>
</tr>
<tr>
<td>Spectral Coverage</td>
<td>Discrete</td>
<td>Continuous</td>
</tr>
<tr>
<td>Pan Band Resolution</td>
<td>10 m</td>
<td>N/A</td>
</tr>
<tr>
<td>Total N° of Bands</td>
<td>10</td>
<td>220</td>
</tr>
</tbody>
</table>

Table 10 ASTER characteristics.
Tabella 10 Caratteristiche del sensore ASTER.

Table 11 Hyperion main sensor parameters.
Tabella 11 Principali parametri del sensore Hyperion.
17-26 July Hyperion acquired data on the 19th in the nadir view and on the 26th with an inclination angle of about 8 degrees. In Table 11 sensors characteristics are reported.

5. Field measurements campaign

During the field campaign the surface characteristics of Etnean area have been analyzed in order to validate the satellite data acquired in the time window of the campaign. As already mentioned before, 3 test sites were selected in etnean area: Mount Etna, Ciclopi islands and Paternò “Salinelle” area. The description of Mt Etna site is reported in Annex A. During the 25/06/2012 aerial acquisition above Ciclopi islands, field Hyperspectral (Spectroradiometer) and Temperature measurements have been performed using a Spectroradiometer Fieldspec Pro and a Thermal Camera. The Fieldspec Pro has allowed to acquire radiance spectra of the marine surface that shows a spectral behaving that can be approximated to a black body. At the same time measure of brightness temperature have been performed on the same surface using the Thermal Camera. The obtained integrated dataset allows to validate the Remote Sensing data by comparing the PRISMA spectra to the Fieldspec data calibrated with brightness temperatures. Different instruments have been used during the campaign:

- a spectroradiometer Fieldspec Pro to measure the surface reflectance of various volcanic products present in the area;
- a Laser scanning for the surface characterization of volcanic outcrops;
- gps, thermal camera, a photometer and a “unilogger” to evaluate the atmospheric and thermal characteristics of measure sites;
- a FTIR (Fourier Spectrometer) used to measure the surface emissivity of outcropping materials.

5.1 Surface Reflectance Spectroscopy

Measurements of solar reflected radiance were carried out with a FieldSpec FR portable spectroradiometer (Analytical Spectral Devices, Inc., 1994). Three separate spectrometers covers the 350-2500 nm spectral range. The first one operates between 350 and 1000 nm, with a spectral resolution (FWHM) of approximately 3 nm and a sampling step of 1.4 nm; the other two cover the region from 900 to 1850 nm and 1700 to 2500 nm respectively. The sampling in these regions is every 2 nm and the resolution varies between 10 and 11 nm. The instrument uses a trifurcated fiber-optic cable to sample the light field being measured. Measurements were made directly with the fiber-optic cable, that has a field of view of 25°. Data storage, visualization and calibration are performed in real time by a dedicated software on a personal computer connected to the instrument (Figure 16).

Two FieldSpec FR portable radiometers were used to measure the surface reflectance spectra. Selected test sites have been chosen in order to complete the Spectral Data-base of Mt Etna surface rocks. The yellow dots in the geological map of Mt Etna indicate the site locations where spectra of targets have been acquired (Figure 17).

5.1.1 Measured sites

Site locations were determined by GPS. In Annex B the table containing the sites location and the targets sampled is reported.

5.1.2 Surface materials spectra

In Figure 18, Figure 19, Figure 20 and Figure 21, four targets and their spectra are shown: first target is blocks of 1852-1853 lava covered by lichens and tephra at Milo site location; second target is the 2002 basaltic lava flow at Forest Reserve road site location; third target is lava covered by tephra and bush at Strada forestale site location; fourth target is a Mud at Paternò site location.

The noisy wavelength range of spectra correspond to the water vapor absorption bands. The atmospheric water vapor affect the acquired spectra in the following wavelength ranges: 1370-1413 nm, 1812-1933 nm and after 2300 nm.

5.2 Ground based topography acquisition

The local morphologies of volcanic surfaces at selected sites (Figure 22) have been reconstructed at sub-meter scale with two different techniques: i) 3D scansion of the surface by a terrestrial Laser scanner device [Mazzarini et al., 2008], ii) 3D...
reconstruction based on sequences of images taken with digital cameras [Favalli et al., 2012].

Eight sites have been surveyed, six are lava surfaces ranging in age from late Holocene to the 1999 eruption blanketed with pyroclastic deposits formed during the explosive eruption in the last ten years. The other two sites are in the southwestern slope of the volcano, close to the town of Paternò, in the Salinelle area (active mud volcanoes). In Table 12 the type of surface and the associated topographic surveys are reported.

5.2.1 Ground based 3D laser scanning

3D scansion of the surfaces have been acquired by using a Konica Minolta VI-910, which is a remote non-contact 3D digitizer (www.konicaminolta-3d.com), to derive through Laser triangulation x, y and z coordinates of imaged objects. The objects are scanned by a plane of laser light emitted from the VI-910’s source aperture. The Laser light (690 nm) is reflected from the surface of the scanned object and registered by the instrument. Each scan line is observed by a single frame and captured by a CCD camera. The surface shape is converted to a grid of over 300,000 vertices (connected points). The VI-910 is provided with three interchangeable lenses that can accommodate measurement of objects of various sizes and distances from the lens. A single scan is capable of capturing an angular field of view of approximately 10 cm² (TELE lens) to 0.8 m² (WIDE lens). The scansion has an accuracy of 0.22 mm in x, 0.16 mm in y and 0.1 mm in z axis for the TELE lens with 300,000 vertices. The WIDE lens accuracy is 1.4 mm along x, 1.04 mm along y and 0.4 mm along z; the z axis is the optical axis of the laser scanner.

During measurements, the laser is mounted on a tripod and positioned at nadir with respect to the surface. In such a way, the z values are the elevation of the surfaces. The surfaces sampled at Mt. Etna have areas up to 1 m² and have been imaged at a distance of about 1 m.

3D reconstruction from photos

The 3D reconstruction from photos (Figure 23) is achieved using the open source code Bundler, which can process from a minimum of 4-5 up to several hundreds of images (Snavely et al., 2007). It is a ‘Structure from Motion’ code, which allows to remove the camera distortion, to calculate the camera shooting position and orientation, and to obtain a preliminary 3D reconstruction of the surface as a reduced point cloud (key points). A more complete and accurate reconstruction is carried out starting from the key points with the open-source Patch-based Multi-View Stereo code (Furukawa and Ponce, 2009) that, in this case, allows the reconstruction of surfaces with meters scales with model errors less than 1 cm [Favalli et al., 2012].

<table>
<thead>
<tr>
<th>L3D</th>
<th>P3D</th>
<th>Surface type</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow 1999</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow Holocene</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow 1787</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow 1780</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow 1852-53</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Lava flow 1971</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Mud volcano</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Mud volcano</td>
</tr>
</tbody>
</table>

Table 12 Topographic surveyed surfaces; L3D: 3D laser scanning; P3D: 3D reconstruction from photos.
Figure 18 a) Picture of blocks of 1852-1853 lava covered by lichens and tephra at Milo site location; b) target spectrum.
Figura 18 a) Foto di blocchi di lava del 1852-1853 coperti da licheni e tephra a Milo; b) spettro del target.

Figure 19 a) Picture of Lava 2002 blocks target at Strada forestale site location; b) target spectrum.
Figura 19 a) Foto di blocchi di lava del 2002 nel sito della strada Forestale; b) spettro del target.

Figure 20 a) Picture of mix tephra, lava and bush target at Strada forestale site location; b) target spectrum.
Figura 20 a) Foto di tephra, lava ed essenze arboree nel sito della Strada Forestale; b) spettro del target.

Figure 21 a) Picture of mud target at Paternò site location; b) target spectrum.
Figura 21 a) Foto del fango al sito di misura di Paternò; b) spettro del target.
Roughness computation

In order to qualitatively describe the surface roughness, the Root Mean Square of Heights ($\sigma$) and the Allan Deviation ($\nu$) have been computed [Mazzarini et al., 2008].

The Root Mean Square of Heights ($\sigma$) is defined as:

$$\sigma = \left\{ \frac{1}{n-1} \sum_{i=1}^{n} [z(x_i) - \bar{z}]^2 \right\}^{1/2}$$  \hspace{1cm} (1)

where $z(x_i)$ is the elevation of point in position $x_i$, the average elevation and $n$ is the number of points. The $\sigma$ has been computed over the whole area, the surfaces have been detrended [Shepard et al., 2001] by subtracting the best-fit plane. The lower the $\sigma$, the smoother the surface.

The Allan Deviation or Root Mean Square deviation ($\nu$) is function of the $\Delta x$ lag, and it is defined as:

$$\nu(\Delta x) = \left\{ \frac{1}{n} \sum_{i=1}^{n} [z(x_i) - z(x_i + \Delta x)]^2 \right\}^{1/2}$$  \hspace{1cm} (2)

where $z(x_i)$ is the elevation of point of position $x_i$, $n$ is the number of points, and $\Delta x$ is the lag used. The function $\nu(\Delta x)$ is computed averaging both horizontal and vertical de-trended profiles derived from 3D Laser scanion.

Topography of natural surfaces is assumed to be self-affine such that increasing the scale of the $x$ and $y$ axes by a factor $r$ must be compensated for in the $z$ direction by a factor $r^H$, where $H$ is the Hurst exponent ($0 < H < 1$). Visually, surfaces with $H > 0.5$ look smoother than surfaces with $H < 0.5$ [Mazzarini et al., 2008 and references therein]. The Hurst exponent is related to the commonly used fractal dimension $D$, by $D = 2 - H$ in the case of a profile and $D = 3 - H$, for a surface.

For an ideal fractal, the conventional parameters $\sigma$ and $\nu$, among other, change with scale, while $H$ is strictly the same. In order to derive $H$, we start by computing $\nu$, as in (2), for different values of the step size $\Delta x$. If topography is indeed self-affine, equation (3) holds:

$$\nu(\Delta x) = C \times \Delta x^H$$  \hspace{1cm} (3)

where $C$ is a constant.
Thus, $H$ is derived as the slope of the best fit line of $\log \nu(\Delta x)$ vs. $\log \Delta x$. The computation of $H$ is done in the length range where the curve exhibits a linear trend. For example, the roughness of surface sampled in the 1852-1853 lava flow has been computed according to equations (2) and (3). In Figure 24 the log-log plots of Allan deviation vs Length is displayed for both laser 3D and photo 3D reconstructions, giving an Hurst exponent of 0.38 in the range 1 – 50 mm for both methods. Applying equation (1) the roughness of the sampled surface is 12.7 mm for laser 3D and 12.4 mm for the photo 3D reconstructions respectively.

### 5.3 Surface Temperature

During this measurements campaign a Thermoteknix System Ltd VisIR 640 thermal camera has been used to collect thermal images over different areas. The instrument is kept in a rugged industrial housing including a central optics pod for different orientation image acquisition. The camera work in 8-14 μm spectral range and has an articulated central optics pod for different orientation image acquisition. Measurements have been collected by using a default set up which is able to set, automatically, the suitable dynamic range defining the hotter and colder spot of the sensed image. During the Etna campaign it has been used both by hand and on a tripod. Tripod has been preferred in the long term acquisitions of 25th June 2012 on Pian del Lago site (Figure 25) where images were collected every 10 seconds for 15 minutes.
5.3.1 Collected Data

Before the campaign the thermal camera was tested in a laboratory in order to set the temperatures range expected during the field acquisitions. Thermal images were collected on 25th June 2012 from 9.40 AM local time up to 12.26 AM local time. The timetable was scheduled according to the ASTER pass time over Mt. Etna summit. Figure 26 shows a subset of the 118 images collected at Pian del Lago.

Figure 26 Time sequence of thermal camera acquisitions of Etna SE crater. The scale bar shows the temperature in degrees Celsius in a scale ranging from 16 to 64°C.

Figura 26 Sequenza temporale di acquisizioni del cratere di SE dell’Etna. La scala riportata in ogni immagine mostra la temperatura in gradi centigradi nell’intervallo tra 16 e 64°C.

Figure 27 Thermal image (left) and visible image (right) taken from Pian del Lago (37°44'12.49”N 15°00’24.17””) toward Etna SE crater.

Figura 27 Immagine termica (sinistra) ed immagine nel visibile (destra) ripresa da Pian del Lago (37°44’12.49”N 15°00’24.17””) verso il cratere di SE dell’Etna.
Thermal images were acquired starting from the SE crater and moving southward. The following Figure 27 and Figure 28 show the thermal and visible images acquired few hundreds of meters far away the starting point close to the SE crater.

5.4 Emissivity measurements

FTIR measurements have been planned as complementary field characterization. FTIR instruments best operation time is usually from sunrise to few hours later and from sunset to few hours later.

Although the acquisition time has not been optimal for emissivity measurements, a data set has been acquired by using two different instruments: a micro FTIR and a Bruker operating in the same spectral range but with a different spectral resolution.

5.4.1 FTIR spectrometer description

The first instrument used is the MicroFTIR, Model 102F spectrometer (Figure 29), developed by Design and Prototypes LTD for field measurements of Earth’s surface and atmosphere spectral radiance. The spectrometer operates at wavelengths ranging from 2 to 16 mm with a spectral resolution of 2 cm⁻¹. In Table 13 its characteristics are shown.

A second portable FTIR instrument for emissivity measurements has been used during the campaign, it is a OPAG-22 FTIR (Bruker Daltonics, Germany). The FTIR Bruker spectrometer collects spectra at up to 0.5 cm⁻¹ resolution, using a ZnSe beamsplitter and LN₂ cooled MCT detector, in a wavenumber range from 500 to 6000 cm⁻¹. The instrument field of view is 30 mrad. The instrument weighs 19 kg and has dimensions of 37x40x26 cm.

5.4.2 Description of the emissivity measurements

The measurements have been executed in different test sites: Torre del Filosofo, Paternò mud volcano and some types of Etna lava flows. Table 14 summarizes the measurements sites and targets while the acquired samples and their related spectra are shown in figures 30-34; the spectral range 7-8 µm is quite noisy because most of the emissivity measurements...
have been executed late in the morning when the environmental temperature was about 35°C.

### 5.5 Gas Emission

Gas emissions from both the summit and the flanks of Mount Etna volcano have been monitored using Remote Sensing techniques and on-site monitoring devices. In particular the CO₂ rich soil degassing and variations in SO₂ flux have been analyzed during the campaign.

#### 5.5.1 CO₂ flux measurements

Soil gas surveys were focused on the determination of diffuse CO₂ efflux from the ground. Water temperature was also measured in the muddy pools of the Salinelle of Paternò. Diffuse CO₂ efflux measurements were carried out in a site located on the lower south-west flank of the volcano at an elevation of 421 m asl, about 2 km SE of the town of Paternò and 2.6 km south of the Salinelle mofete. Diffuse CO₂ emissions were measured using the accumulation chamber method (Figure 35), which consists of measuring the rate of increase of the CO₂ concentration inside a cylindrical chamber opened at its bottom placed on the ground surface. The chamber is provided with an internal fan to achieve an efficient gas mixing and is connected with a portable NDIR (nondispersive infrared) spectrophotometer (PP Systems, UK, mod. EGM4). The accumulation chamber is placed firmly on the ground surface so as to avoid intrusion of air inside of it. Before being pumped to the spectrophotometer, the gas is filtered in order to trap any eventual water vapour, whose presence can create analytical interferences and can also damage the IR cell in case of vapour condensation. The gas inside the chamber is constantly pumped from the chamber to the IR spectrophotometer and then sent again into the chamber. The change in concentration during the initial measurement is proportional to the efflux of CO₂ [Parkinson, 1981; Tonani and Miele, 1991; Chiodini et al., 1998]. This is an absolute method that does not require corrections linked to the physical characteristics of the soil. We tested the method in the laboratory with a series of replicate measurements of known CO₂ effluxes. The average error was about ±5%, which is assumed as a random error in the natural emission rates. The reproducibility in the range 200 – 1600 g m⁻² d⁻¹ was 5%. The average efflux value measured at the site near Paternò on 15th
Figure 30 Torre del Filosofo sample.
Figura 30 Campione dal sito di Torre del Filosofo.

Figure 31 Le Salinelle Mofete.
Figura 31 Sito delle Salinelle.

Figure 32 Basaltic rock (1892 lava).
Figura 32 Roccia basaltica (lava 1892).

Figure 33 Surface materials of Serra Pizzuta.
Figura 33 Materiali superficiali di Serra Pizzuta.
June, 2012 was 1973 g m⁻² d⁻¹, and that measured on the 2nd of July, 2012 was 2031 g m⁻² d⁻¹. These values are part of a period characterized by a general increasing trend of diffuse degassing in this sector of the volcano (Figure 36) that culminated in early October 2012, probably as a consequence of the development of volcanic activity at Mt. Etna. Water temperature measurements were carried out using a non-contact laser-guided IR temperature meter (Fluke Corporation, WA, US, mod. Fluke 68), with accuracy of ±1% for targets above 23 °C and of ±2 °C for targets between -18 °C and 23 °C. The highest temperature measured on 27th of June, 2012 in the water and mud issuing from the Salinelle mofete at Paternò was 22 °C, in agreement with previous and following measurements carried out during 2012 (maximum temperature values ranged between 20 and 28 °C). This was a rather low value (the highest temperature measured at this site in the past 150 years was almost 50 °C, Silvestri, 1866, 1878) that indicates a stable degassing activity at this site during the PRISMA campaign.

5.5.2 SO₂ flux measurements
We report bulk SO₂ flux from Mt Etna’s summit craters collected on 25 June 2012 by means of the FLAME network (Flux Automatic MEasurement, Figure 37). The network consists of nine autonomous ultraviolet scanning spectrometer station (UV-Scanner) installed at an altitude of ~900 m asl on the flanks of Mt Etna and spaced ~7 Km apart [Salerno et al., 2009b; Campion et al., 2009]. Each UV-Scanner station consists of an Ocean Optics S2000 spectrometer coupled with an ADC1000-USB A/D analogue-to-digital converter. The spectrometers is connected via fibre optics (1000 m) to a two-quartz-lens telescope (8 mrad Field of View) mounted in a rotating head that allows a scanning of the sky above the station for ~150°. A coated visible-light filter (Hoya U330) is installed as a window in the rotating head to reduce stray light inside the spectrometer and for environmental protection. The light exposure of the detector is automatically adjusted throughout the day to optimize the signal. The device is controlled by a micro-controller mounted on a custom-made circuit board [Caltabiano et al., 2005]. Each station scans the sky for almost 9 h, intersecting the plume at a distance of ~14 km from the volcano summit craters and acquiring a complete scan in ~5 min. SO₂ col-
umn amounts are retrieved in real-time on site from the recorded UV open-path spectra applying the Differential Optical Absorption Spectroscopy (DOAS) technique but using a modeled clear-sky spectrum rather than a measured one as in the classic DOAS technique [Perner, 1983, Platt and Stutz, 2008; Salerno et al., 2009a].

Processed data is then transmitted via GSM telephonic modem links or WiFi to a Master Control Station located in the INGV Observatory in Catania, where the SO$_2$ flux is automatically computed and available for monitoring purposes [Salerno et al., 2009b; Bonaccorso et al., 2011; Calvari et al., 2011]. Uncertainty in computed flux ranges between -22 and +36% [Salerno et al., 2009b].

During ASI Prisma Campaign, the FLAME network has provided daylight SO$_2$ flux measurements from ~7:30 to ~16:00 (all times are in GMT) allowing a direct overlap with other data collected during the campaign, especially during the passage of the satellites TERRA and EO-1 over Mt Etna on 25 June 2012. On 25 June 2012, SO$_2$ flux showed an average of ~1800 t d$^{-1}$ with a standard deviation of 620 t d$^{-1}$ (1$\sigma$) enveloped between a minimum and maximum flux of 700 t d$^{-1}$ (10:30) and 3000 t d$^{-1}$ (13:35) respectively (Figure 38).

Figure 38 shows a SO$_2$ cross-section profile measured in the vertical plane above the ENIC station in Nicolosi at 10:00.

| Table 15 Time of passage of ASTER and Hyperion satellites and SO$_2$ flux values obtained by FLAME network. | Tabella 15 Passaggi dei satellite ASTER e Hyperion e valori di flusso di SO$_2$ ottenuti dalla rete FLAME. |
|---|---|---|
| **Satellite (Sensor)** | **Time of passage of Satellite (hh:mm, GMT)** | **SO$_2$ flux (a$^{-1}$) and recording time (hh:mm, GMT)** |
| TERRA / ASTER | 09:54 | 1231 ; 09:52 |
| | | 1498 ; 09:56 |
| EO-1 / HYPRION | 10:00 | 743 ; 10:00 |

During ASI Prisma Campaign, the FLAME network has provided daylight SO$_2$ flux measurements from ~7:30 to ~16:00 (all times are in GMT) allowing a direct overlap with other data collected during the campaign, especially during the passage of the satellites TERRA and EO-1 over Mt Etna on 25 June 2012. On 25 June 2012, SO$_2$ flux showed an average of ~1800 t d$^{-1}$ with a standard deviation of 620 t d$^{-1}$ (1$\sigma$) enveloped between a minimum and maximum flux of 700 t d$^{-1}$ (10:30) and 3000 t d$^{-1}$ (13:35) respectively (Figure 38).

Figure 39 shows a SO$_2$ cross-section profile measured in the vertical plane above the ENIC station in Nicolosi at 10:00.
Table 15 reports the SO$_2$ flux data recorded by the FLAME network in overlap with the passage of ASTER and Hyperion satellites on 25 June 2012.

### 5.6 Atmospheric characteristics measurements

#### 5.6.1 Multi-parametric meteo ground station

Since 2003, the remote sensing group has developed an integrated system to measure at ground many meteorological parameters in order to characterize the selected site. The fieldworks are always planned synchronously with a known satellite pass and a scheduled airborne flight. When this is established a ground based multi-parametric station is deployed to register many parameter within a temporal windows covering the satellite and airborne pass.

The home made portable ground station (Figure 41) is divided in 3 conceptual blocks represented in Figure 40.

- **Power supply (Green):** Essentially composed of 2 12 Volts/ 20 Watts (x2) solar panels which power is regulated by a homemade multi-plug-voltage power dispatcher, which acts as regulator and power distributor for all the devices used by the ground station. The power is backed up using a 12 Volts Battery. The solar panels disposed in parallel, can ensure battery charging during all the period of the survey.

- **Sensors block (Blue):** This block takes in charge the acquisition of all the needed parameters to allow the following necessary atmospheric corrections on the remote sensed data from satellite and airborne. All the data are acquired thanks to a homemade PC Software “Unilogger” and all synchronized and geographically located thanks to a handheld GPS. The acquired parameters are the following:
- **GPS**: UTC Time and Geographic position (Lat., Lon, Altitude). The GPS Time stamp is used for tagging the measures and synchronizing the PC clock.
- **Meteo**: Surrounding air temperature, Wind velocity, Atmospheric pressure, Precipitation.
- **Infrared Thermometer and Thermocouple Temperature**: Radiometric temperature / emissivity and soil contact thermocouple Temperature using a supplied probe.
- **Connectivity and computing Block (Red)**: All the instruments are connected to a laptop through a Serial/USB hub converter and managed by our **Unilogger** software. It is a Visual Basic (VB.Net) software with a user friendly interface that takes care of handling the data input through the serial ports and synchronizing them in order to save them in ASCII files to be easily read or imported by several software. The measurements were executed during the airborne and satellite acquisitions.

The temperature measured by the Fluke IR thermometer and by the probe shows the trend represented in Figure 42.

### 5.6.2 Sunphotometer observations

During the campaign sun-photometric measurements were performed in different places in order to characterize the atmospheric particulate. Sun-photometry permits to determine the total atmospheric optical thickness. Total optical thickness is the sum of the air molecules scattering (Rayleigh), of the aerosols scattering and of the ozone absorption in the wide Chappuis band. Water vapor and other gases may be neglected in the aerosols sun-photometer channels, while a dedicated channel of the photometer is generally used to determine the water vapor content.

The sun-photometers used is the portable MICRTOPS II model Solar Light. The instrument is a Volztype photometer with a 2.5° field of view. Thanks to its reduced dimension and weight it is largely used in field campaigns also in volcanic areas (Figure 43). The instrument measure the sun radiation in a reduced field of view in the following wavelength channels: 440nm, 675nm, 870nm, 936nm and 1020nm.
MICROTOPS II provides the measurements of the Total optical thickness as a function of the wavelength and the water vapor columnar content. In Table 16 the measurements executed are reported. In Figure 44 a sample of AOT measurements in 5 wavelength channel sampling the volcanic plume area and the atmospheric background are shown.

5.6.3 High resolution “Chemical Weather” forecast

The “chemical weather” is defined as the state of the atmospheric composition at given time. The term is borrowed from the definition of “weather”, that defines the physical state of the atmosphere at a given time. CETEMPS in recent years implemented one operational system for chemical weather forecast over Europe and Italy [Menut and Bessagnet, 2010; Curci e Visconti, 2011; Curci, 2012; Zhang et al., 2012]. An experimental service, called ForeChem, automatically provides daily prediction of the concentration of pollutants (such as particulate matter, ozone and nitrogen dioxide) for the same day and the two subsequent days mak-

<table>
<thead>
<tr>
<th>DAY</th>
<th>START (UT)</th>
<th>STOP (UT)</th>
<th>MICRTOPS II Records</th>
<th>Altitude (m a.s.l.)</th>
<th>Coordinate</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-06-12</td>
<td>07.31</td>
<td>07.33</td>
<td>5</td>
<td>2023</td>
<td>37°42’17.2”N 15°00’07.9”E</td>
<td>Sapienza</td>
</tr>
<tr>
<td>24-06-12</td>
<td>08.29</td>
<td>08.36</td>
<td>8</td>
<td>2636</td>
<td>37°42’31.5”N 15°00’18.0”E</td>
<td>N Cone 2001</td>
</tr>
<tr>
<td>24-06-12</td>
<td>09.06</td>
<td>09.10</td>
<td>8</td>
<td>2743</td>
<td>37°44’01.6”N 15°00’28.9”E</td>
<td>W Cone 2002-2003</td>
</tr>
<tr>
<td>24-06-12</td>
<td>09.38</td>
<td>09.44</td>
<td>15</td>
<td>2839</td>
<td>37°44’18.9”N 15°00’27.8”E</td>
<td>SE ESNL</td>
</tr>
<tr>
<td>24-06-12</td>
<td>10.26</td>
<td>10.32</td>
<td>10</td>
<td>2939</td>
<td>37°44’18.9”N 15°00’27.8”E</td>
<td>Torre del Filosofo</td>
</tr>
<tr>
<td>25-06-12</td>
<td>08.04</td>
<td>08.11</td>
<td>10</td>
<td>1696</td>
<td>37°41’33.6”N 14°58’09.1”E</td>
<td>Forestal reserve</td>
</tr>
<tr>
<td>25-06-12</td>
<td>08.49</td>
<td>08.50</td>
<td>5</td>
<td>1765</td>
<td>37°42’21.1”N 14°57’45.5”E</td>
<td>2002 Lava flow</td>
</tr>
<tr>
<td>25-06-12</td>
<td>09.32</td>
<td>09.47</td>
<td>13</td>
<td>1859</td>
<td>37°43’20.9”N 14°57’21.3”E</td>
<td>1641 Lava field</td>
</tr>
<tr>
<td>26-06-12</td>
<td>07.35</td>
<td>07.50</td>
<td>15</td>
<td>210</td>
<td>37°34’23.7”N 14°53’24.5”E</td>
<td>Salinelle Paternò</td>
</tr>
<tr>
<td>26-06-12</td>
<td>08.20</td>
<td>08.26</td>
<td>9</td>
<td>207</td>
<td>37°34’23.1”N 14°53’24.6”E</td>
<td>Salinelle Paternò</td>
</tr>
<tr>
<td>26-06-12</td>
<td>13.44</td>
<td>13.58</td>
<td>25</td>
<td>928</td>
<td>37°44’04.5”N 15°06’10.5”E</td>
<td>Musco Street Milo</td>
</tr>
<tr>
<td>27-06-12</td>
<td>07.39</td>
<td>08.31</td>
<td>26</td>
<td>823</td>
<td>37°44’18.2”N 15°06’30.4”E</td>
<td>Milo</td>
</tr>
</tbody>
</table>

Table 16 Sun-photometer measurements sites.
Tabella 16 Siti di misura del fotometro solare.
The concentration of chemical compounds in the atmosphere is regulated by four main categories of processes: emission, transport, chemical transformation, and deposition. Three-dimensional numerical models of the atmosphere contain a mathematical representation of our current knowledge on those processes and predicts the evolution in time and space of chemical species in the atmosphere. The models we will be talking about are called Chemistry-Transport Models (CTM). The data flow in a generic CTM at the regional scale (simulating a limited area, not the entire globe) is sketched in Figure 45. Given a set of meteorological fields, natural and anthropogenic gridded emission fluxes, land use map, and lateral boundary conditions the core of the model solves the set of differential equations that governs the concentration of chemical species. With a simplified mathematical notation, the CTM solves the set of coupled continuity equations for the considered chemical species:

\[
\frac{\partial C_i}{\partial t} = -\mathbf{U} \cdot \nabla C_i + P_i - D_i \quad \{i = 1, \ldots, n\}
\]

where \(C_i\) is the molar fraction of the i-th species, \(t\) is time, \(\mathbf{U}\) is the wind vector, \(P_i\) and \(D_i\) the production and destruction terms of \(C_i\), \(n\) is the number of chemical species. The first term on the right hand side denotes the processes of transport (advection, turbulent diffusion, etc.). \(P_i\) and \(D_i\) include emissions, chemical production/destruction and deposition.

The meteorological input to the ForeChem system is currently provided with the MM5 model [Dudhia, 1993]. Simulations domains are two, one covering Central-Western Europe at an horizontal resolution of 36 km and another nested into the first that covers Italy at a resolution of 12 km. In the vertical, the model has 29 sigma levels (i.e. pressure levels that smoothly follow the topography) from ground to about 18 km with a resolution that degrades from bottom to top. In the first 200 m there are 4 levels, in the first 1 km there are 10 levels.

The chemistry-transport model used in ForeChem is CHIMERE [Bessagnet et al., 2008]. It is also setup on two nested domains, the first over Europe with a resolution of 0.5° (about 45 km) and the other nested over Italy at 0.15° resolution (about 12 km). In the vertical the model goes from ground to 500 hPa (5.5 km) with 8 sigma levels. The anthropogenic emissions of the species of interest (carbon monoxide, oxides of nitrogen, sulphur dioxide, non-methane hydrocarbons, ammonia and particulate matter) is derived from the inventory provided by the Environmental and Monitoring Evaluation Program (EMEP http://www.ceip.at/emission-data-webdab/emissions-used-in-emep-models/) for the European scale and from the inventory of Centro Tematico Nazionale su Ambiente Clima ed Emissioni (CTN-ACE) for the Italian scale. Biogenic emissions of hydrocarbons are calculated with the MEGAN model [Guenther et al., 2006]. The model simulated the main tropospheric chemical reaction in the gas and heterogeneous phase (about 80 species and 200 reactions) at the base of the ozone-oxide of nitrogen-hydrocarbons chemistry [Jenkin and Clemitshaw, 2000]. Aerosol [Posch, 2005] are
Figure 45 Data flow in a Chemistry-Transport Model (CTM). In a CTM the processes governing the evolution of atmospheric chemical composition are solved over a three-dimensional discrete grid. Meteorological fields are produced offline with a meteorological model and passed as input to the CTM. Other main inputs are the emissions fluxes from natural and anthropogenic source, the land use map, and the lateral boundary conditions for chemical species.

Figure 46 Screenshot of ForeChem forecast on Google Earth.
simulated with a section al model with 8 bins from 40 nm to 10 µm. For further details on the system and a synthesis of validation results the reader may refer to Curci [2012] and to the User’s Guide of CHIMERE (http://www.lmd.polytechnique.fr/chimere/). On the Italian domain, the model overestimates on average the maximum daily ozone levels by 10% (correlation of 0.76) and underestimates the daily values of particulates with a diameter less than 10 µm (PM10) by 30-40% (correlation 0.5), in line with the state-of-the-art.

During the measurement campaign over Mount Etna new features to the ForeChem system were implemented in order to have a more flexible visualization of the output. The two developments concern the visualization of the maps on Google Earth and the output of variable timeseries at selected locations of interest. In Figure 46 we show an example of the Google Earth maps that may be visualized using the KMZ file at this link: http://pumpkin.aquila.infn.it/forechem/ge/forechem_ITA.kmz

while in Figure 47 we show a screenshot of the time series of Mount Etna, updated every day at the link: http://pumpkin.aquila.infn.it/forechem/xINGV/etna.html

A web interface with fully customizable graphical output of the ForeChem chemical weather forecasts is currently under development.

Conclusions

The field campaign over Mt. Etna area was successfully completed according to the original planning also thanks to excellent weather conditions. Ground data collected will be used to calibrate and validate the airborne images acquired over the test sites. The ground spectral data set collected will also be processed to create a spectral library of Mt. Etna surface materials. The whole data set acquired during this campaign will be used to extract a suitable data set to simulate PRISMA data and to develop and test the algorithms in the frame of ASI-AGI project.
Aknowledgements

Mt Etna and Paternò field campaign 2012 was funded by the Agenzia Spaziale Italiana (ASI) in the frame of the research project ASI-AGI n. 1/016/11/0. We thank Dr. David Pieri (NASA-Jet Propulsion Laboratory, ASTER Science Team) for the successfully acquisition and process of ASTER imagery during the field campaign. We also thank Dr. Elizabeth Middleton, Dr Stuart Frye and Dr Petya Campbell, Goddard Space Flight Centre for providing Hyperion data. We wish to thank all the colleagues from the Catania section of INGV, especially Dr Giuseppe Puglisi who kindly provided GPS data for airborne data geometric correction; we also thank the National Coast Guard for the remarkable support to the ground and water measurements activities during the campaign. Finally we are grateful to the editorial board of Quaderni di Geofisica for the accurate and patient work done and to Dr Stefano Corradini for his revision activity and his precious suggestions.

References


Sulfur dioxide.
Fluctuations in SO$_2$ emission during
Lundgren P., Berardino M., Coltelli M., Fornaro G., Lanari
The island of Vulcano.
Calibration of a bi-spectral
Atmospheric Radiative Transfer. (studies in
Lanzafame G., Neri M., Acocella V., Billi A., Funiciello R.,
Shepard M.K., Campbell B.A, Bulmer M.H., Farr T.G.,


annex A
Description of Mt Etna test site

Mount Etna is the largest and most active of Europe’s volcanoes, with a present summit elevation of 3315 m, and eruptive activity occurring nearly every year. Eruptions occur both at the summit, where there are four craters (Northeast Crater, Voragine, Bocca Nuova, Southeast Crater) and on the flanks, of which more than 300 individual craters bear testimony. Summit activity may be continuous over many years or even decades, while flank eruptions occur every few years, with a clear trend towards an increase in the frequency of flank eruptions and in the long-term output rate being observed in the past 50 years or so. Since the late 1970s, summit eruptions have shown a clear increase in their intensity, and one hallmark of this activity has been the extremely high rate of short-lived, extremely violent paroxysmal eruptive episodes, which culminated in more than 120 paroxysms during the 6 years between 1995 and 2001, most of which occurred at the youngest of the summit craters, the Southeast Crater. Such events commonly produce lava fountains that reach heights of many hundred meters, in some cases exceeding 1000 m. Etna can even boast having produced the tallest lava fountain ever measured on any volcano, >2000 m, on 4 September 1999. Most lava fountains are accompanied by the generation of abundant tephra that consists of highly inflated scoriae and can fall tens of kilometers away from the volcano on the downwind side. In contrast to these impressive but brief (rarely more than 30 minutes) episodes, summit eruptive activity at other times occurs in a continuous but notably milder manner, sometimes for years without interruption. This is what once was believed to be the most characteristic activity at

Figure 1A Distribution of historical and recent prehistoric lavas on Mount Etna.
Figura 1A Distribuzione di lave preistoriche e recenti sul Monte Etna.
Etna in times between flank eruptions, called “persistent” by Rittmann [1958]. It consists of relatively small Strombolian bursts accompanied, generally at distinct vents, by slow lava effusion ($< 1 \text{ m}^3 \text{s}^{-1}$). Before it started its exceptional series of lava fountains in 1998-2001, the Southeast Crater was the site of such “persistent” activity, and similar activity, accompanied by sporadic intracrater lava effusions, also occurred at the Bocca Nuova and the Voragine between 1995 and 1999. The Bocca Nuova itself produced a spectacular eruption in October-November 1999 with exceptionally strong Strombolian activity alternating with Hawaiian-style lava fountaining and copious overflows of lava onto the western flank of the volcano. Summit eruptions do not represent any significant threat to human property although episodic tephra falls generated by paroxysmal events may cause damage to cultivated land and represent a nuisance to local residents. The map of Figure 1A shows the distribution of historical and recent prehistoric lavas on Mount Etna [Behncke and Neri, 2003b].

Flank eruptions, on the other hand, are distinct events that have occurred on an average of 4 years during the 20th century. Since they occur lower on the slopes, they represent a major hazard to human property and infrastructures, and out of the 25 flank eruptions of the 20th century, 10 have caused significant material damage, including the destruction of an entire village (Mascalì) in 1928. These eruptions tend to occur preferably in certain sectors of the volcano, along more or less radially arranged fissure swarms, of which the most active are the South Rift and the Northeast Rift, with their respective fan-shaped fissure zones extending to the NNE and SE flanks [Acocella and Neri, 2003]. Out of the 15 flank eruptions that have occurred since 1971, 13 have occurred in these areas.

Flank eruptions were until recently believed to be mainly effusive, with only mild Strombolian activity at the source vents. The eruptions of 2001 [Behnke and Neri, 2003a; Billi et al., 2003; Lanzafame et al., 2003] and 2002-2003 [Neri et al., 2003] have shown that flank eruptions can be highly explosive: the latter of the two produced even more tephra than lava, which is extremely rare at Etna. In the long term flank eruptions are seen to occur in a cyclic manner [Behnke and Neri, 2003b]: rather than at random intervals, they occur in conspicuous clusters, or series, so that it can be assumed that in certain periods the volcano is more unstable than in others. Stable periods are marked by exclusively summit eruptions (and little seismic activity along the numerous faults crisscrossing the eastern and southern flanks, which are affected by gravitational instability), whereas flank eruptions are frequent when there is also heightened evidence for flank instability. The latest flank eruptions, which occurred after a period of long-lived summit eruptions, coincide with a new period of flank instability, as was clearly seen during the 2002-2003 eruption [Neri et al., 2003].

It is now believed that the dynamics of Etna’s volcanism are strongly controlled by the accumulation of magma below the volcanic edifice and flank instability [Acocella et al., in press]. Recent observations by Lundgren et al. [2003] indicate that flank instability is triggered by the rapid inflation of the volcano during sub-edifice magma accumulation, which, in turn, might be influenced by regional tectonics [Acocella and Neri, 2003]. It is likely that the voluminous accumulation of magma in sub-edifice reservoirs, the enhanced instability observed since 2001 and the unusually short interval between the flank eruptions of 2001 and 2002-2003 mark the beginning of a new eruptive cycle [Behnke and Neri, 2003a,b]. This implies that more flank eruptions will occur at brief intervals as long as the volcano remains unstable.

Geology of the measurement sites

This section briefly describes the geological characteristics of the sites where measurements were made. This is of particular relevance in the case of fieldspec radiance measurements, for which a number of sites with different characteristics were chosen, which are believed to represent the great variety of recent volcanic surfaces that is encountered at Mt. Etna. Generally there are two types of volcanic surface: lava flows and pyroclastic deposits. The earlier differ greatly in their surface characteristics, including their surface morphology (‘a’a and pahoehoe) and vegetation cover, which in turn depends on (a) the age and (b) the location (elevation and exposure). Most lavas furthermore bear, to a certain degree, a pahoehoe cover that results from recent explosive volcanism at the summit craters (1990-2000) and from flank eruptive centers (2001 and 2002-2003). In order to obtain a record as representative as possible, sites were chosen on lavas on different flanks and of different age, and with pyroclastic covers that show different characteristics. The locations of the measurement sites are shown in Fig. 20 and Fig. 25. Special attention was dedicated to the products of the latest eruptions in 2001 and 2002-2003, which include voluminous and widespread pyroclastic deposits. The pyroclastic deposits were measured both at proximal and distal sites. They consist of lapilli-sized fragments in the earlier whereas is predominant at distal sites, as far as the eruptions of 2001 and 2002-2003 are concerned. Lapilli-sized scoriaceous fragments produced by short-lived paroxysmal episodes at the summit craters are abundant even at more than 10 km from their source and in many locations are mixed with the finer-grained pyroclastics of the 2001 and 2002-2003 flank eruptions. It is notable that re-working tends to affect much of these deposits within very short time after their emplacement and thus their characteristics
at the time of the measurements differ strongly from those to be encountered immediately after deposition, especially in the more distal locations.

**Lava flows**

The by far most abundant type of lava surfaces at Etna is 'a'a, with pahoehoe representing less than 10% of the exposed lava surfaces on the entire volcano. 'A'a lava is mostly of the blocky variety, with blocks ranging in size from a few centimeters to more than one meter. Flows (type A 'a'a) emplaced rapidly (a few hours to 1-2 days), at high effusion rates, are usually relatively thin ("2 m) and have flat surfaces with poorly developed flow channels and levees, and show less variation in the block size spectrum than flows whose emplacement occurred over longer time spans (>2 days) (type B 'a'a). These latter are also characterized by well-developed levees and often have conspicuous flow channels whose floor may lie up to 10 m or more below the lateral levees. Among the measured flows, the 1981 lava on the NNW flank was emplaced in very short time, whereas the 2002 lava near Piano Provenzana (NE flank), emplaced over a period of about one week, belongs to the most chaotic lava fields to be seen at Etna. Bulbous pahoehoe, more rarely also ropy pahoehoe, occurs within some predominantly 'a'a flow fields in coincidence with ephemeral (tube-fed) vents and is particularly frequent in the 1983 flow field on the southern flank, especially in its central portion. Some lava flows, such as that of 2002 near Piano Provenzana, contain considerable quantities of welded scoriae that were deposited near the source vents and entrained with the flowing lava.

There are several lava fields on Mount Etna that are largely pahoehoe. In nearly all cases these are quite voluminous, including the 1614-1624 lava flow field, which was produced by the most voluminous historical flank eruption of the volcano (1-2 km³). About 90% of the pahoehoe shows ropy surfaces, with bulbous and slabby surfaces being much less common. The development of vegetation on Etna's lava fields does by no means proceed in a homogeneous manner from site to site, but depends strongly on the surface characteristics, exposure, altitude and location of the respective site. From one area to the other there are strong differences even with similar flow surfaces and at the same altitude, because of the extreme microclimatic variations even at short distances. Generally the progress of plant colonization on pahoehoe is seen to take much longer than on 'a'a and is mostly due to the more compact nature of this lava type, which offers much less possibility for higher plants to take root. Lichens appear on both pahoehoe and 'a'a within about a decade after emplacement. Grasses and shrubs are more abundant in depressed areas, where their growth is often facilitated by the presence of pyroclastics.

**Pyroclastic deposits**

Contrary to the widespread notion of Mount Etna as a non-explosive volcano, pyroclastic deposits abound in many areas of the volcano and are not only restricted to near-vent facies (pyroclastic cones), but also occur even on many recent to sub-recent lava flows. A high percentage of these deposits is of fairly recent origin, coinciding with the much intensified summit eruptions since the mid-1990s and the strongly explosive flank eruptions of 2001 and 2002-2003. Although similarly explosive eruptions have also occurred in the past, Etna’s eruptions throughout the 20th century have been remarkably non-explosive except for a number of paroxysmal eruptive episodes at the summit that became more numerous towards the end of the century. Distal pyroclastic deposits are rapidly reworked and are prone to disappear quite fast from lava flow surfaces, so that the current situation may be unusual unless explosive volcanism continues at a similar rate as in recent years.

Currently, three types of pyroclastic deposits can be encountered at Etna. One, the most abundant and long-lived, occurs close to eruptive vents where pyroclastic cones or spatter ramps are built. In the case of relatively mildly explosive activity, these deposits consist largely of bombs and spatter which show varying degrees of welding, and although the constructs are relatively small (from a few to a few tens of meters in height), they are most resistant to erosion and reworking. The second is produced by more explosive activity and constitutes larger cones (up to more than 100 m in height) but individual fragments are generally smaller (lapilli with varying quantities of loose bombs) due to a higher degree of fragmentation. Where such cones are particularly exposed (such as those of 2001 and 2002-2003 on the upper southern flank), the finer-grained fraction is rapidly eroded, particularly by the near-constant and often gale-force wind. Significant degradation was observed at the cones of the latest eruptions very shortly after their formation and continues at an impressive rate. Runoff during heavy rainfalls is accentuated in areas where fumarolic activity leads to a local cementation of the pyroclastics and is capable of undermining the flanks and crater rims on these cones.

The third type of pyroclastic deposit varies from a relatively proximal to a distal facies and consists of continuous to discontinuous sheets mantling the pre-existing topography away from the cones themselves. It can be distinguished in two sub-types, of which one consists of lapilli-sized, highly inflated scoriae that are the products of extremely violent, short-lived episodes of lava fountaining at the summit craters. Deposits of this type are discontinuous except close (about 1 km) to the source and contain centimeter-sized clasts even at up to 10 km distance when freshly fallen; these fragments commonly break into smaller pieces during the many heavy rainfalls that occur at Etna. Nearly all of the presently occur-
ring deposits from lava fountains were produced in 2000, when the Southeast Crater produced 66 paroxysmal eruptive episodes.

In contrast, explosive volcanism during the flank eruptions of 2001 and 2002-2003 has produced deposits that maintain continuity far beyond the proximal areas. Closer to their source vents (but far beyond the pyroclastic cones themselves) they may be many tens of meters thick and reached thicknesses of dozens of centimeters even up to 5 km downwind from the vents. A characteristic decrease in the median diameter of the clasts is observed at increasing distance from the source, from lapilli-sized fragments within about 2 km from the vents to coarse ash farther away. On the downwind side such deposits were continuous at the time of deposition but much of the tephra was rapidly remobilized by rainfalls and removed from exposed sites whereas accumulation occurred in protected, depressed areas.
annex B
The location of the sites measured using the spectroradiometer FieldSpec Pro are described in Table 1B where the site name, its coordinates, the targets description and the date of the survey are shown. The different coloured cells indicates a certain number of targets referred to the same site.

<table>
<thead>
<tr>
<th>Site</th>
<th>spectrum number</th>
<th>LAT</th>
<th>LONG</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Milo, Angelo Musco street, upward)</td>
<td></td>
<td>37.7328</td>
<td>15.1032</td>
<td>lava flow with compact and homogeneous lithoid horizon located at about 1 m underneath the lava flow surface</td>
<td>23/06/2012</td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td></td>
<td></td>
<td>square with black regolith</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td></td>
<td></td>
<td>low bush with small yellow flowers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td></td>
<td></td>
<td>Metric and submetric lava blocks with weathering and lichens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-19</td>
<td></td>
<td></td>
<td>Broom</td>
<td></td>
</tr>
<tr>
<td>2 (Milo, site in the opposite side of the road of 1)</td>
<td></td>
<td>37.7330</td>
<td>15.1034</td>
<td>very overgrown old lava flow with lichens and tephra covered blocks</td>
<td>23/06/2012</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>lava block with lichens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>Tephra</td>
<td></td>
</tr>
<tr>
<td>3 (Milo, dirt road as 1 and 2)</td>
<td></td>
<td>37.7345</td>
<td>15.1032</td>
<td>lava flow with blocks covered by lichens and tephra. The vegetation coverage over the lava flow is medium.</td>
<td>23/06/2012</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td></td>
<td></td>
<td>black tephra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td>block with tephra and lichens</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.7336</td>
<td>14.8331</td>
<td>lava flow with pistachio trees</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td></td>
<td></td>
<td>lichens covered lava block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td></td>
<td></td>
<td>lichens covered lava block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td></td>
<td></td>
<td>lava block totally covered by lichens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td></td>
<td></td>
<td>small pistachio tree + soil + pistachio tree branch</td>
<td></td>
</tr>
<tr>
<td>5 (same site of 4)</td>
<td></td>
<td>37.7339</td>
<td>14.8331</td>
<td>lava flow covered by lichens in the middle of pistachio trees growing</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>lichen covered lava flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>same target of 40-49 spectra but different white reference</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>spectrum number</td>
<td>LAT</td>
<td>LONG</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>6 (Bronte: site close to the railway)</td>
<td>6</td>
<td>37.7882</td>
<td>14.8419</td>
<td>very weathered and lichens covered Pahoehoe lava with low bush and dry plants</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>lat</td>
<td>long</td>
<td>lichens and moss covered lava block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>lat</td>
<td>long</td>
<td>lichens and moss covered lava block with homogeneous and smooth surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>lat</td>
<td>long</td>
<td>lichen covered lava block with rugged and irregular surface</td>
<td></td>
</tr>
<tr>
<td>7 (south of Bronte: sp 280)</td>
<td>7</td>
<td>37.7614</td>
<td>14.8222</td>
<td>lichens and shrubs covered AA lava flow with lava tunnel structures</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>90-99</td>
<td>lat</td>
<td>long</td>
<td>clasts and tephra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-109</td>
<td>lat</td>
<td>long</td>
<td>more lithic target respect to 90-99</td>
<td></td>
</tr>
<tr>
<td>8 (road from Ragalna to Etna south)</td>
<td>8</td>
<td>37.6558</td>
<td>14.9765</td>
<td>lava flow 2001</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td>lat</td>
<td>long</td>
<td>lichens covered block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td>lat</td>
<td>long</td>
<td>lichens covered block</td>
<td></td>
</tr>
<tr>
<td>9 (road from Rifugio Sapienza to Nicolosi)</td>
<td>9</td>
<td>37.6969</td>
<td>15.0132</td>
<td>tephra covered lava flow with outcropping lava blocks, moderately covered by vegetation with low shrubs</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>130-139</td>
<td>lat</td>
<td>long</td>
<td>tephra covered lava flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140-149</td>
<td>lat</td>
<td>long</td>
<td>Tephra</td>
<td></td>
</tr>
<tr>
<td>10 (road from Rifugio Sapienza to Nicolosi)</td>
<td>10</td>
<td>37.6860</td>
<td>15.0185</td>
<td>lichen covered lava flow</td>
<td>24/06/2012</td>
</tr>
<tr>
<td></td>
<td>150-159</td>
<td>lat</td>
<td>long</td>
<td>lichen and tephra moderately covered lava flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160-169</td>
<td>lat</td>
<td>long</td>
<td>lichen and tephra moderately covered lava flow</td>
<td></td>
</tr>
<tr>
<td>11 (Forest Reserve road: south gate)</td>
<td>11</td>
<td>37.6919</td>
<td>14.9694</td>
<td>1780 lava flow with blocks covered by lichens</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td>lat</td>
<td>long</td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td>lat</td>
<td>long</td>
<td>small blocks covered by lichens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td>lat</td>
<td>long</td>
<td>lava and tephra</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>spectrum number</td>
<td>LAT</td>
<td>LONG</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>11 bis (Forest Reserve road: south gate, same lava flow of 11)</td>
<td>37.6928</td>
<td>14.9692</td>
<td></td>
<td>1780 lava flow as point 11</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>tephra with vegetation and sparse clasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>low shrub</td>
<td></td>
</tr>
<tr>
<td>12 (Forest Reserve road)</td>
<td>37.7059</td>
<td>14.9624</td>
<td></td>
<td>2002 lava flow</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td>black lava blocks with rugged surface and sparse tephra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td></td>
<td></td>
<td>black lava block</td>
<td></td>
</tr>
<tr>
<td>13 (Forest Reserve road)</td>
<td>37.7226</td>
<td>14.9559</td>
<td></td>
<td>1942 AA scoriae lava flow</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>90-99</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-109</td>
<td></td>
<td></td>
<td>Scoriae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td></td>
<td></td>
<td>Scoriae</td>
<td></td>
</tr>
<tr>
<td>14 (Forest Reserve road)</td>
<td>37.7295</td>
<td>14.9523</td>
<td></td>
<td>old lava flow covered with lichens and tephra</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130-139</td>
<td></td>
<td></td>
<td>scoriae covered by lichens and tephra</td>
<td></td>
</tr>
<tr>
<td>15 (Forest Reserve road)</td>
<td>37.7310</td>
<td>14.9514</td>
<td></td>
<td>old lava flow covered by several trees, bush and dry grass</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>140-149</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150-159</td>
<td></td>
<td></td>
<td>low grass, lava and tephra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160-169</td>
<td></td>
<td></td>
<td>lava with tephra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170-179</td>
<td></td>
<td></td>
<td>Pine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180-189</td>
<td></td>
<td></td>
<td>spinosanto bush</td>
<td></td>
</tr>
<tr>
<td>16 (Forest reserve road)</td>
<td>37.7575</td>
<td>14.9517</td>
<td></td>
<td>1999 lava flow with black scoriae</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>190-199</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200-209</td>
<td></td>
<td></td>
<td>Scoriae</td>
<td></td>
</tr>
<tr>
<td>17 (Forest reserve road)</td>
<td>37.8071</td>
<td>14.9391</td>
<td></td>
<td>old lava flow covered with lichens</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>210-219</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220-229</td>
<td></td>
<td></td>
<td>small lava block covered by lichens</td>
<td></td>
</tr>
<tr>
<td>18 (Forest Reserve road: north gate Pitarrone)</td>
<td>37.8148</td>
<td>15.0599</td>
<td></td>
<td>2002 narrow lava flow</td>
<td>25/06/2012</td>
</tr>
<tr>
<td>Site</td>
<td>spectrum number</td>
<td>LAT</td>
<td>LONG</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
<td>------------------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Etna North: Mare-Neve road</td>
<td>230-239</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>240-249</td>
<td></td>
<td></td>
<td>scoriae lava</td>
<td></td>
</tr>
<tr>
<td>Point 1CP (Etna North: Mare-Neve road)</td>
<td>etnanord_00_09</td>
<td>37.8541</td>
<td>15.0377</td>
<td>lava with blocks with strong surface weathering and lichens</td>
<td>25/06/2012</td>
</tr>
<tr>
<td></td>
<td>etnanord_10_19</td>
<td>37.8541</td>
<td>15.0382</td>
<td>blocks lava with strong surface weathering and lichens as 00-09 and low dry shrubs</td>
<td></td>
</tr>
<tr>
<td>Point 2CP (Etna North: Mare-Neve road)</td>
<td>etnanord_20_29</td>
<td>37.8549</td>
<td>15.0233</td>
<td>Basaltic lava outcrops with heaps of sparse regolith</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_30_39</td>
<td>37.8547</td>
<td>15.0233</td>
<td>as 20-29 with some shrubs (basaltic regolith with low shrubs)</td>
<td></td>
</tr>
<tr>
<td>Point 3CP Etna Nord Strada statale Mare Neve</td>
<td>etnanord_40_49</td>
<td>37.8543</td>
<td>14.9797</td>
<td>basaltic lava outcrop, no vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_50_59</td>
<td></td>
<td></td>
<td>young basaltic blocks lava flow outcrop with very low vegetation</td>
<td></td>
</tr>
<tr>
<td>Point 4CP (Etna North: Mare-Neve road)</td>
<td>etnanord_60_69</td>
<td>37.8564</td>
<td>14.9219</td>
<td>Very weathered lava blocks with vegetation and soil with very low plants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_70_79</td>
<td></td>
<td></td>
<td>as etnanord_60_69 but a little smoother and clearer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_80_89</td>
<td></td>
<td></td>
<td>as previous but more rugged</td>
<td></td>
</tr>
<tr>
<td>Point 5CP (Etna North: Mare-Neve road)</td>
<td>etnanord_90_99</td>
<td>37.8547</td>
<td>15.0429</td>
<td>lichens covered lava block surrounded by vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_100_109</td>
<td></td>
<td></td>
<td>as etnanord_90_99 with some moss cover</td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>etnanord_110_119</td>
<td>37.8466</td>
<td>15.0751</td>
<td>piece of polystyrene left on the road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_111_120</td>
<td></td>
<td></td>
<td>lava block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_121_130</td>
<td></td>
<td></td>
<td>heap of decimetric lava blocks and basaltic regolith with sparse bushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>etnanord_131_140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>spectrum number</td>
<td>LAT</td>
<td>LONG</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------------------------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>19 (Paternò: &quot;Salinelle&quot; field</td>
<td>etnanord_141_150</td>
<td></td>
<td></td>
<td>lava block almost totally covered by dry moss</td>
<td>26/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.5730</td>
<td>14.8903</td>
<td>&quot;salinella&quot;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td></td>
<td></td>
<td>whitish saline crust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td></td>
<td></td>
<td>saline whitish crust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td></td>
<td></td>
<td>yellowish mud</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>yellowish little mud volcano with bubbling water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>yellowish little mud volcano with bubbling water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td></td>
<td></td>
<td>1 m diameter water pool pozza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td>1 m diameter water pool pozza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td></td>
<td></td>
<td>whitish saline crust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-99</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-109</td>
<td></td>
<td></td>
<td>same target of 60-79 where only radiance was measured</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td></td>
<td></td>
<td>whitish saline crust</td>
<td></td>
</tr>
<tr>
<td>20 (Paternò: &quot;Salinelle&quot; field west side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26/06/2012</td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130-139</td>
<td></td>
<td></td>
<td>greyish-whitish mud</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140-149</td>
<td></td>
<td></td>
<td>whitish saline crust, the target is about 10 m far from the probe</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>spectrum number</td>
<td>LAT</td>
<td>LONG</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------</td>
<td>--------</td>
<td>------------------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>whitish saline crust with sparse small black blocks. Target about 10 m far from the probe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stretch of water, target about 10 m far from the probe</td>
<td></td>
</tr>
<tr>
<td>21 (Paternò second site: mud and water volcanoes field)</td>
<td>150-159</td>
<td>37,5445</td>
<td>14,9196</td>
<td>small mud and water volcanoes, plain area with solid mud crust and structures mud cracks like</td>
<td>26/06/2012</td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19</td>
<td></td>
<td></td>
<td>mud cracks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td></td>
<td></td>
<td>small bubbling pool with water and gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-39 (Radiance measurements)</td>
<td></td>
<td></td>
<td>small bubbling pool with water and gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>small grey mud flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td></td>
<td></td>
<td>small mud flow and small gas bubbling pool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td>Water pool with whitish crust and further small bubbling pool inside</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td></td>
<td></td>
<td>yellowish crust wit small cracks clay like</td>
<td></td>
</tr>
<tr>
<td>22 (Sant’Alfio)</td>
<td></td>
<td>37,7384</td>
<td>15,1139</td>
<td>old lava flow covered by lichens, low bushes amd yellow flowers</td>
<td>27/06/2012</td>
</tr>
<tr>
<td></td>
<td>0-9</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-19 (same target of laser scanning)</td>
<td></td>
<td></td>
<td>lava block surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-29 (same target of laser scanning)</td>
<td></td>
<td></td>
<td>lava block surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-39 (same target of laser scanning)</td>
<td></td>
<td></td>
<td>lava block surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td></td>
<td></td>
<td>Bush</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td></td>
<td></td>
<td>WR (white reference measure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td></td>
<td></td>
<td>lichens covered lava block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td></td>
<td></td>
<td>dry bush</td>
<td></td>
</tr>
</tbody>
</table>

Table 1B: Locations of the sites measured with the Fieldspec Pro and description of the measured targets.
Tabella 1B: Siti di misura del FieldSpec e descrizione dei target misurati.
Index

Introduction

1. PRISMA mission characteristics
   1.1 Mission objectives
   1.2 ASI-AGI Project

2. ASI-AGI Sicily 2012 campaign overview

3. Airborne campaign
   3.1 Airborne flight lines scheduling
      3.1.1 Calibration flight on 23rd June, 2012
      3.1.2 Test flight over the Mt. Etna on 24th June 2012
      3.1.3 Airborne survey over the Mt. Etna on 25th June 2012
      3.1.4 Airborne survey over the Paternò area and Ciclopi islands on 26th June, 2012
   3.2 Characteristics of CGIAM airborne system
   3.3 Airborne components

4. Satellite data Acquisitions
   4.1 ASTER
   4.2 Hyperion

5. Field measurements campaign
   5.1 Surface Reflectance Spectroscopy
      5.1.1 Measured sites
      5.1.2 Surface materials spectra
   5.2 Ground based topography acquisition
      5.2.1 Ground based 3D laser scanning
   5.3 Surface Temperature
      5.3.1 Collected Data
   5.4 Emissivity measurements
      5.4.1 FTIR spectrometer description
      5.4.2 Description of the emissivity measurements
   5.5 Gas Emission
      5.5.1 CO$_2$ flux measurements
      5.5.2 SO$_2$ flux measurements
   5.6 Atmospheric characteristics measurements
      5.6.1 Multi-parametric meteo ground station
      5.6.2 Sunphotometer observations
      5.6.3 High resolution “Chemical Weather” forecast

Conclusions

Acknowledgments

References

Annex A

Annex B