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Introduction 
 
 In the recent years we assisted to an increasing number of studies devoted to the quantification of the 
effects of temperature developed as a consequence of frictional heat on a sliding interface. The temperature 
field generated on the fault surface is responsible of a large number of physical and chemical dissipative 
process, summarized in Bizzarri (2010a).  
 Among these we mention here the flash heating of micro–asperity contacts, basically consisting in a 
different behavior of fault friction at high fault slip velocities [e.g., Bizzarri, 2009a; Noda et al., 2009], the 
melting of rocks and gouge particles [Nielsen et al., 2008; Bizzarri, 2010b], the thermally–induced 
pressurization of fluids in saturated fault structures [Andrews, 2002; Bizzarri and Cocco, 2006; Rice, 2006]. 
 A key issue of all these studies is the proper calculation of the temperature distribution on the fault 
surface and its temporal evolution. 
  
 In this study we compare two different analytical solutions proposed in the literature with the special 
aim to clarify their prominent features, the numerical advantages and the different physical implications of 
each of them. In particular, we will compare the temporal evolution of the obtained temperature in the case 
of spontaneously spreading, fully dynamic rupture on a fault of finite width and we will show how the 
solutions can be reconciled.                 
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1. The fault geometry  
 
 The fault geometry considered in this study is the same as that introduced in Bizzarri (2009b), briefly 
summarized here for completeness. As illustrated in Figure 1, the vertical, planar fault has dimensions L 

f and 
W 

f in the strike and dip directions, respectively. The fault is embedded in a surrounding elastic medium, 
discretized by mean of specialized parallelepids, having faces parallel to the Cartesian axes, x1, x2 and x3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic representation of the fault model considered in the present study. The grey plane x2 = x2

f 
represents the fault, the star H indicates the hypocenter. Dashed lines denote the spatial extension of 
computational domain, Ω (FD), having dimension x1end, x2end and x3end in each direction. The plane x3 = 0 is the 
free surface. 
 
 
 The plane x2 = x2

f is governed by a fault constitutive law, the details of which are behind the goals of 
the present study. We simply mention here that the constitutive equation makes possible to (numerically) 
obtain the solution of the fundamental elasto–dynamic equation in the presence of medium discontinuity (the 
fault plane), where a spontaneous, dynamic rupture nucleates and further propagates.  
 In the remainder of the work we will denote with v the magnitude of the fault slip velocity and with τ  
the magnitude of the fault traction. Both the two variables (which are the solution of the spontaneous 
dynamic rupture problem) explicitly depend on the two on–fault coordinates x1 and x3 and on time t (so that 
the problem is 3–D). For sake of simplicity we consider a vertical strike slip fault, as in Figure 1. 
        
 
2. The solution of Kato (2001) 
 
 Kato (2001) studies the evolution of a fault in its pre–seismic phase (i.e., that preceding the dynamic 
rupture propagation leading to stress release and seismic waves excitation in the medium surrounding the 
seismogenic structure), by using a simple 1–D spring–slider analog fault system. The novelty of that paper is 
the use of a modification of the classical analytical expression of the rate– and state–dependent constitutive 
relation [see Ruina, 1983 and references cited therein], accounting for an additional dependence on 
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temperature developed on the frictional interface (the “fault” plane), as a consequence of the sliding of the 
mass block (i.e., frictional heat). In a generic point (x1,x3) of the plane x2 = x2

f, at a distance ζ from x2 = x2
f 

along the off–fault direction (i.e., along the x2 axis; see Figure 1) and at time t the temperature evolution due 
to a fault slip velocity history v(t) and a traction history τ(t) is calculated by Kato (2001) following the 
solution of McKenzie and Brune (1972), which reads: 
 
 

    (1) 
 
 

where T0 is the initial temperature (i.e., at t = 0) and c is the heat capacity of the bulk composite for unit 
volume, χ is the thermal diffusivity. In equation (1) v and τ are calculated in the point (x1,x3) of the plane     
x2 = x2, where also T is calculated. In other words, (x1,x3) is the normal projection on the fault of the point 
where T is computed. 
 If we consider the limit of t’ → t, we have that the integrand in equation (1) vanishes, so we can safely 
rewrite previous equation as 
 
         

            (2) 
 
 
where ε is an arbitrarily small, positive, real number. Moreover, in the limit of ζ → 0 (which physically 
identifies the fault plane) equation (2) can be further simplified: 
 
  

     (3) 
 
 
 Equation (3) can be calculated numerically as follows: 
 
 
 

    (4) 
 
 
 
in which the apex (m or n) denotes the time level at which the variables are evaluated and Δt is the time 
discretization (leading to tm = mΔt). We note that the quantity ε in equation (3) is represented by Δt in 
equation (4); this is numerically correct, provided that the time step Δt is sufficiently small (see section 4). 
Indeed, the requirement that Δt is sufficiently small is necessary also for a proper resolution of the       
elasto–dynamic problem, as discussed in details in Bizzarri and Cocco (2005). 
 We have demonstrated that equation (4) is numerically equivalent to the equation (12) proposed by 
Kato (2001) to discretize equation (3), reported here for completeness: 
 
 

   (5) 
 
 

with v0 = τ 0 = 0.  
 
 
3. The solution of Bizzarri and Cocco (2006) 
 
 Geological evidences [Chester and Chester, 1998; Billi and Storti, 2004] suggest that a seismogenic 
fault is composed by an inner fault core, where the principal slipping zone is located and where the slip is 
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concentrated, surrounded by a fractured damage zone, located before the undamaged host rock. By assuming 
this kind of fault model [see also Sibson, 2003], Bizzarri and Cocco (2006) consider the frictional heat due to 
a heat source 
 
 

     (6) 
 
 
 
where 2w is the thickness of the slipping zone. The Fourier’s equation  
 
 

     (7) 
 
 
again in the limit ζ → 0, has then the following solution: 
 
 

    (8) 
 
 

in which the erf(.) is the error function ( ( )  ed 
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(8) reads: 
 

     
   (9) 

 
 
    
where m or n denote the time level, as in equations (4) and (5).  
 
 
4. Comparison of the different solutions 
 
 In this section we will compare the temperature evolution obtained by Kato (2001; see previous 
equation (5)) and that obtained by Bizzarri and Cocco (2006; see previous equation (9)).  
 A first important feature we want to emphasize is that both the solutions exhibit a de–coupling 
between temperature evolution and the histories of fault slip velocity and traction. In other words, the 
temperature field computed at time level m depends on the time evolution of v and τ, up to the time level     
m – 1 (i.e., the previous one). From a computational point of view this means that the calculation of T at time 
level m is straightforward, in that we already know all the needed quantities from previous numerical 
iterations.  
 In order to compare the two solutions (equations (5) and (9)) we will consider a typical evolution of 
fault slip velocity and traction, obtained in a dynamic rupture simulation. These solutions have been obtained 
numerically, via the finite difference code described in detail in Bizzarri and Cocco (2005). On the 
considered strike slip vertical fault we select a receiver located at the hypocentral depth and at a distance 
from the hypocenter along the strike direction such that the time histories are not influenced neither by the 
nucleation nor by the presence of the fault boundaries (the fault has finite extension). The behavior of v and τ 
for that receiver is reported in  Figure 2.  
 The specific details about these solutions are behind the main purposes of the present work; we can 
simply keep them as sufficiently representative of a typical crustal earthquake. They have been obtained by 
using a very fine temporal discretization (Δt = 6.94 x 10– 4 s), so that the quantity ε in equations (3) and (8) 
makes the numerical approximations (5) and (9) reliable.   
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(a)        (b) 
 
Figure 2. Time evolutions of the fault slip velocity (panel (a)) and traction (panel (b)) considered for the 
comparison between the two solutions for the temperature field. The solutions pertain to a fault receiver 
located at hypocentral depth and sufficiently far from the hypocenter and from the fault boundaries.  
 
 
 By using the time histories {vm} and {τ m} reported in Figure 2 we compute the temperatures as 
obtained from equations (5) and (9). The results are displayed in Figure 3. 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
Figure 3. Comparison between the two solutions for the temperature evolution for the time histories reported 
in Figure 2. 
 
 
 From Figure 3 we can clearly see that for a typical value of the slipping zone thickness (w = 1 mm) 
the two solutions are rather different. We can see that the final value of T is nearly the same (the two curves 
asymptotically reach the same final value). However, the behavior during the accelerating phase (when the 
fault slip velocity increases up the its maximum value) and also during the stress release (when the traction 
degrades from upper yield stress down to the kinetic level) is markedly different in the two cases.  

Notably, the temperature predicted by the solution of Kato (2001) (black line in Figure 3) exceeded 
the melting temperature (which in turn would cause a state change in the gouge material and rocks, from 
their solid state to the molten state). Moreover, the temperatures predicted by equation (5) appear to be 
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excessively high and basically unrealistic. On the contrary, the time evolution of the temperature predicted 
by equation (9) (red curve in Figure 3) would remain below the melting point. 
 
    
5. How to reconcile the solutions 
 
 It is evident from Figure 3 that the predictions of the temperature evolution on the fault given by 
equations (5) and (9) are rather different. In this section we will show that the two solutions can be 
reconciled, under proper assumptions. 
 Bizzarri and Cocco (2006) have extensively explored the behavior of a propagating 3–D earthquake 
rupture and the consequent developed temperature as a function of the parameters of the model. Indeed, it 
has been clearly demonstrated that the key parameter controlling the temperature evolution is the thickness 
of the slipping zone (2w), as physically expected.  
 In Figure 4 we compare the time histories of T obtained by considering different values of w, by 
varying this parameter within the range suggested by laboratory inferences and geological observations. In 
Figure 4 the thick, black curves is still the solution by Kato (2001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Effects of the different values of the thickness of the slipping zone (values are reported in the 
legends). Thick, black curves reports the solution by Kato (2001) for a better comparison. Bottom panel 
display a zoom in the time window marked on the top panel.   
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 As expected, we can see from Figure 4 that by increasing the value of w the developed temperature 
progressively decreases. This is physically reasonable, in that large values of w imply that the heat input vτ is 
distributed over a larger spatial extension in the off–fault direction.  
 Interestingly, we can note that for w = 10 µm the solution by Kato (2001) and by Bizzarri and Cocco 
(2006) are substantially identical, in that the two curves are indistinguishable. We have also proven that for  
w ≤ 10 µm the temperatures predicted by equation (9) are unchanged with respect to that pertaining to the 
case of w = 10 µm.    
 
 
6.  Summary 
 
 The sliding on an interface generates frictional heating, finally leading to a variations in the 
temperature field. Indeed, the calculation of the temperature change is extremely important in the dynamic 
modeling of the seismic source, since there is a large number of thermally–activated chemico–physical 
phenomena occurring during an earthquake rupture and influencing its dynamic propagation on that interface 
[see Bizzarri, 2010a for a review].  
 In this study we have compared two analytically and conceptually different solutions for the 
temperature field generated during an earthquake rupture. The first one has been proposed by Kato (2001) on 
the basis on the “classical” (or traditional) models of heat conduction, relying on the framework of 
McKenzie and Brune (1972). The second one has been derived by Bizzarri and Cocco (2006), on the basis of 
a more realistic seismogenic model, corroborated by some geological evidence, in which the heat source is 
distributed over a slipping zone, having a finite width.  
 Through numerical calculations we have demonstrated here that, during a cosesimic rupture where the 
values of the fault slip velocity are of the order of several meters per second, the two solutions are rather 
different. 
 In particular, the prediction of Kato (2001) would lead to extremely high temperatures, greater that the 
melting point and unrealistic (without the account of a state change, the developed temperature change 
would reach values comparable with those attributed to the Earth’s core). 
 In this study we have also shown that for values of the slipping zone half–thickness (w) smaller that 10 
µm the two solutions can be reconciled, since they are substantially equivalent. We want to emphasize that 
holds (k being a constant):              
 
 
 

      (10) 
 
 
 
 If we consider the limit for w → 0+ of equation (9), considering the result in equation (10), with           
k = ( )     2 tnm !" # , we obtain exactly equation (4), that we recall is numerically identical to the solution of 
Kato (2001; our equation (12)). For typical thermal parameters and for typical velocity and traction histories 
we have proven that w = 10 µm makes the two solutions substantially equivalent.   
 To conclude, the solution of Kato (2001) can be considered as a simplified version of the more general 
solution found by Bizzarri and Cocco (2006). It can be eventually employed to compute the temperature 
evolution during the interseismic phase, when sliding velocities are very small and the consequent 
temperature change is not so important as during the cosesimic time window. Moreover, the solution by Kato 
(2001) can be used in dynamic models of cosesimic ruptures only in cases when the slip is extremely 
localized (so that w = 10 µm of less).  
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