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Introduction 
 

Since the latter half of last century many studies and laboratory experiments have focused on the 
understanding of the evolution of frictional strength during sliding events on active faults. Such events may 
occur through aseismic fault creep, high-velocity slip and, in some cases, as a combination of both.  

According to the concept that earthquakes are frictional instabilities, their time occurrence may show a 
periodical pattern (the seismic cycle) whose behavior can be referred to the stick-slip dynamic. The dynamic 
evolution of a fault is often modeled considering its formal analogy with a physical system known as the 
spring-slider model (namely, a damped harmonic oscillator). Many experimental studies have been 
conducted using the spring-slider model, most of them simulating the interaction between slip surfaces with 
the surrounding elastic medium with a single-degree-of-freedom system. Despite its obvious limitations, 
such a model has provided important insights on dynamics of stick-slip cycle [Gu et al., 1984; Carlson et al., 
1994], nucleation of earthquakes and triggered earthquake phenomena [e.g. Belardinelli et al., 2003].   

On the basis of several experimental results on rock friction, Dieterich [1979] and Ruina [1983] 
formulated rate- and state-dependent friction laws, in which the frictional resistance is expressed through the 
evolution of the sliding rate and its history. Afterwards, Chester and Higgs [1992] figured out that also the 
temperature variation, produced by frictional heating, can affect the duration of the seismic cycle and the 
evolution of the frictional strength as well and consequently they incorporate such a thermal effect, 
improving the previous Ruina’s constitutive law.  
 

The present study is aimed to: 
1. investigate the spring-slider physical response depending on the adopted constitutive law; 
2. show the influence that the constitutive laws can exert on the time occurrence of a seismic 

instability and on the seismic cycle duration; 
3. compare the constitutive laws in order to show their different features in simulating the evolution 

of slip velocity, stress drop and seismic cycle. 



 6 

 
1. The spring–slider dashpot model of a seismogenic fault  
 

In the present study the equation of motion of a spring-slider dynamic system, including the inertial 
term, is numerically solved: 

! 

m˙ ̇ u = k(u
load

"u)"#      (1) 
 

The spring-slider model here considered is the same as that one introduced in many previous works 
dealing with fault dynamics where the model is deeply discussed; here we will shortly describe it for 
completeness.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Schematic representation of a spring-slider system. 

 
 

As the name implies, such a model is mainly composed by a rigid block, a spring and a support base 
(which represents the interface between the bottom of the sliding block and the underlying floor representing 
a fault plane), and the spring mimicking the elastic medium surrounding the fault. Focusing on Figure 1, u is 
the slip, m is the mass per unit of area, τ is the frictional resistance, uload is the load point displacement and k 
is the elastic spring constant.  

In order to better understand the evolution of unstable sliding events and their time occurrence, it is 
necessary to have a description of the motion along the fault, either at low or high speeds. For this purpose 
according to the simulation strategy employed by Boatwright and Cocco [1996] and by Belardinelli et al., 
[2003], the equation of motion is solved for the quasi-static regime and also for the dynamic one both 
separated by the physical quantity called critical velocity vc. In particular, as long as the slip rate is lower 
than the critical velocity (v ≤ vc) the dynamic equation is solved in the quasi-static approximation (i.e., by 
neglecting the inertial term 

! 

m˙ ̇ u  in equation (1)), and when v > vc the motion is fully dynamic and the 
complete equation (1) is solved. 

When the slider velocity reaches large values (compared to the loading point velocity), a seismic 
instability occurs. In particular, a seismic slip event, or an instability, is considered to occur when the slip 
velocity becomes transiently larger than an assumed threshold velocity, referred to as vL [Belardinelli et al., 
2003; Bizzarri, 2010c]. In a long time interval the slider can be characterized by a periodical variation of 
values of frictional resistance and sliding velocity. Such a periodical variation defines the slider cycle time 
(Tcycle), calculated as the interval separating two subsequent time instants when the slip rate overcomes vL. In 
the present study the Tcycle represents an important physical quantity because it is closely related to the 
earthquake recurrence time on the same fault [Belardinelli et al., 2003; Bizzarri, 2010c]. 

 
 
2. Rate– and state–dependent friction laws 
 

So far many studies stated that unstable failures and earthquakes are the result of interactions between 
the frictional properties of a sliding surface with the surrounding elastic system [Weeks, 1993]. Moreover, 

uload 

u 
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laboratory experiments have showed some dependences of the friction on the sliding rate and on the sliding 
history that are critical to the frictional stability of faults. Furthermore, considerable progresses have been 
made in the understanding of fault dynamics and rock friction since constitutive equations including such 
sliding history and velocity have been first introduced [Dieterich, 1979; Ruina, 1983]. These constitutive 
equations were developed in order to reproduce many frictional behaviors observed in rocks during 
experiments and afterwards have been used also to simulate and model many aspects of faults seismicity.   

In the present study we will consider three different analytical formulations of the rate- and state-
dependent friction laws: the Dieterich-Ruina’s law (DR henceforth), the Ruina’s law (RU henceforth) and 
the Chester-Higgs’ law (CH henceforth). While the first two laws do not directly incorporate the effects of 
the frictional heat, the Ruina’s law has been extended by Chester and Higgs [1992] to account for the 
temperature variations along the fault. 
 
2.1. Dieterich–Ruina’s model 

One of the most important aspects of such an empirical model was that Dieterich, trough his laboratory 
experiments, figured out a logarithmic dependence of the frictional strength on the sliding velocity [Weeks, 
1993]. The DR law, also known as the ageing evolution law, is expressed trough the following equation: 
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In the above equation τ is the frictional resistance of a sliding surface which depends on the constant 

frictional coefficient µ* considered at a reference slip rate v* and on two governing parameters a and b: the 
former describes the direct dependence of friction on the slip rate and the latter states the evolution effect 
that the velocity exerts on the frictional strength as well. Moreover, τ depends on the characteristic distance L 
which controls the evolution of the state variable ψ, which account for the slip history and for properties of 
contact sliding surfaces (memory effects). In equation (2) v is the slip velocity and σn

eff is the effective 
normal stress.  
 
2.2. Ruina’s model 

The RU law, also known as the slip evolution law, is expressed as follows: 
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The physical meaning of the parameters appearing in equation (3) are the same as those already 

mentioned for equation (2), except for the state variable Θ, which is now a dummy variable and it is not 
directly associated to the average contact time (hold time) of the micro-asperities of the fault surface.  
 
2.3. Chester–Higgs’s model 

As already mentioned, the effect of the temperature variation on the evolution of frictional strength 
hasn’t been taken into account neither in the DR nor in the RU model. Indeed, Chester and Higgs [1992], 
interpreted their experiments by suggesting the temperature affects the frictional resistance. Their model 
reads: 
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where T f is the temperature developed by frictional heat. It is expressed by the closed-from analytical 
solution of the 1–D Fourier’s heat conduction equation, which can be expressed as follows: 
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The equation (5) was originally formulated by Kato [2001], by considering a fault having an 

infinitesimal thickness and characterized by spatially uniform slip, slip rate and shear stress. In a separate 
work, Bizzarri [2010b] demonstrated that a more general solution for temperature change, accounting for a 
fault zone of finite width, reduces to equation (5) in the limit of vanishing slipping zone thickness.  

In equation (5) Tini is the initial uniform temperature (i.e., at t = 0), ρ is the cubic mass density of 
rocks, c is the specific heat, κ is the thermal diffusivity of the continuous medium in which the fault is 
embedded and t0 = 0 and tn = t. 
 
2.4.  Frozen friction above vc 

In the present study we fully account for low and high velocity values. Originally, Dieterich proposed 
his constitutive law [Dieterich, 1979, 1981; Weeks, 1993] by considering laboratory experiments performed 
at relatively low sliding speeds. Weeks [1993] introduced a modification to the steady state analytical 
expression in the Ruina’s rate- and state-dependent friction constitutive law, by postulating that the friction 
becomes independent of the velocity at high slip rates.  

For all the three constitutive laws reported in this study the Weeks’ approach has been considered; in 
this case in equations (2), (3) and (4) we use 
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Equation (6) states that the velocity v is frozen at a suitable value of the slider velocity vc as soon as 

such critical threshold is exceeded. For completeness we have also considered the case without any 
constrains at high slip rates. In the remainder of this study we will refer to the Week’s approach as to the 
frozen (FR) model while the latter will be tagged as the not frozen (NOT FR) model. 
  
 
3. Numerical results 
 

In the present section we present numerical results obtained by solving numerically the equation of 
motion (1) coupled with the three constitutive laws (DR, RU, CH). As already mentioned previously, the 
main goals of the present study are: 

 
a) to analyze the physical meaning of each constitutive law during the different phases of motion 

along a fault plane, considering the frozen and not frozen approximation; 
b) to check if, and how, each law, with its constrains, can influence the duration of the seismic 

cycle; 
c) to compare all the simulations results in order to understand their main differences and their 

prominent features. 
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Starting from the same initial conditions a twin numerical simulations have been conducted for each 
constitutive law, in order to obtain the time evolutions of the velocity, shear stress and Tcycle, for both the 
frozen and not frozen cases. 

The initial parameters used in all the numerical simulations are reported in Table 1. 
 
Parameter Value 

Model Parameters 
Tectonic loading rate,

! 

˙ " 
0

= kvload 3.17 × 10−3 Pa/s (= 1 bar/yr) 
Machine stiffness, k 10 MPa/m 
Period of the analog freely slipping system, Ta.f. = 2π 

! 

m/k  5 s 
Critical value of the sliding velocity above which the 
dynamic regime is considered, vc 

0.1 mm/s 

Threshold value of the sliding velocity defining the 
occurrence of an instability, vl 

0.1 m/s 

Fault Constitutive Parameters 
Initial effective normal stress, σn

eff 30 MPa  
Logarithmic direct effect parameter, a 0.007 
Evolution effect parameter, b 0.016 
Characteristic scale length, L 1 × 10−2 m 
Reference value of the friction coefficient, µ* 0.56 
Reference value of the sliding velocity, v* 3.17 × 10−10 m/s 
Initial slip velocity, v0 3.17 × 10−10 m/s 
Initial shear stress, τ0 16.8 MPa (= µ*σn

eff) 
Initial temperature, T0 100 °C 
Heat capacity for unit volume of the bulk composite, c 2.6 × 106 J/(m3 °C) 
Thermal diffusivity, κ 1 × 10−6 m2/s 

 
Table 1. Parameters adopted in the present study. Initial values refer to the time t = 0. 

 
 

The following figures show the superimposition of the whole ensemble of the numerical experiments 
carried out for each constitutive equation. We will mainly focus on the time evolution of the slip rate 
(Figures 2a, 2b), of the shear stress (Figure 3) and of the seismic cycle (Figure 4). 

 
Two important points can be appreciated trough the analysis of Figure 2a:  

- the differences between velocity peaks for each constitutive law; 
- the different time occurrence of seismic events obtained by assuming the same constitutive law on the 

fault, but considering frozen or not frozen conditions. 
  

In particular, referring to the velocity peaks, we can see that higher velocities are reached for the 
instability pertaining to a fault governed by the DR law. Furthermore, the slip velocities obtained for the 
frozen case are greater than those obtained for the not frozen one, for both DR and CH constitutive laws, 
while an opposite trend occurs for the RU law.  

Besides this result, we want to emphasize that the slip velocities obtained with the CH frozen 
simulation are in agreement with those obtained for the RU not frozen simulation. Moreover, the CH law 
requires lower values of both time and slip rate peaks to undergo to a seismic instability, since it considers 
the thermal effects expressed by equation (5). Finally, we observe that, by considering the same constitutive 
model, the frozen and not frozen instabilities exhibit quite different patterns that are not in phase with each 
other over the time. 
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Figure 2a. Slip velocity time history in a linear scale. The light and dark red lines represent the CH 
simulations, the light and dark green lines represent the RU simulations and the light and dark blue lines 
show the DR simulations. 
 

 
 

Figure 2b. The same as Figure 2a, but now v is in a logarithmic scale. 
 

Referring to Figure 2b, the semi-logarithmic scale allows to appreciate the differences between the 
velocity minima reached after each instability. Indeed, according to the previous observations, the lowest 
minima are those governed by the DR law and, what is more, for both the CH and DR laws the frozen 
simulations show lower minima with respect to the not frozen case. On the contrary, the opposite happens 
with the RU simulations. Moreover, by considering the same constitutive law, it can be still appreciated the 
time lag between the frozen and not frozen slip events. 
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Figure 3. Shear stress time history. The colors have the same meaning as in Figures 2a and 2b. 
 

 
We plot in Figure 3 the time evolution of the resulting traction predicted by the different constitutive 

models. It can be clearly observed that higher shear stress peaks are obtained with the CH frozen simulation 
(light red line), while lower shear stress peaks are reached in the RU simulations (light and dark green lines). 
Moreover, the shear stress peaks reached in both DR an RU simulations are comparable, while the CH frozen 
peaks are significantly greater than those referred to the CH not frozen simulation. Furthermore, by 
considering both the DR simulations (frozen and not frozen; light and dark blue lines), the shear stress 
minima are significantly lower in the frozen constrain. The opposite occurs in the RU simulations, that is the 
minima turn to be lower in the not frozen case.  

Conversely to the previous situations, the traction minima seem to be comparable in both the CH 
simulations. Interestingly, the stress drop that pertaining to each constitutive law is proportional to the slip 
velocity peaks (showed in Figure 2a); highest stress drops are associated to the highest slip velocities, 
realized in the DR simulations. 

Referring to the objective b) of the present section, Figure 4 shows the recurrence time of the seismic 
instabilities for all the constitutive laws, either in frozen and not frozen cases. Here it can be observed that, 
on average, for both the frozen and not frozen simulations the CH law shows a lower seismic cycle pattern, 
the DR shows the highest values of seismic cycle while the RU seismic cycle is about in the middle. 

Furthermore, while for both CH and DR laws the seismic cycle is smaller in the not frozen case, for the 
RU law the lower seismic cycle is related in the frozen simulation. Therefore the RU seismic cycle has an 
opposite trend, compared to the other two constitutive laws, as it can be also seen from Table 2.  

Eventually the values of Tcycle predicted by both the RU and CH frozen simulations are nearly 
comparable. Table 2 summarizes all the seismic cycle values extrapolated for each constitutive law, in order 
to highlight the opposite trend governing the RU simulation. 
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Table 2. Average values of the seismic cycle for each constitutive law and for both the frozen and not frozen 
cases. Tcycle is computed in all cases starting from the 5ft instability event, in order to avoid possible effects of 
the transient stage of the system, basically controlled by the initial conditions. 

 
 
 

 
 
Figure 4. Recurrence time (Tcycle) as resulting from the different governing models adopted in the present 
work. Open symbols refer to the frozen simulation while those closed refer to the not frozen simulation. 

 
 
 

In addition, focusing on Figure 4, we can observe that the first instabilities (that are sensitive to the 
initial conditions of the system) become stable when the system reaches the limiting cycle.   

In order to attribute a wider physical meaning to the previous numerical simulations and results, a 
further parametric investigation has been conducted. For instance, by considering the DR and RU not frozen 
simulations, a particular combination of the constitutive parameters a, b and L has been sought for each 
constitutive law, keeping all the others parameters unchanged (initial velocity, loading rate, etc.), in order to 
achieve in both cases comparable Tcycle values.  

Such numerical results are reported in Figure 5, where a similar seismic period, approximately 123 

Constitutive law Tcycle 
(yr) 

(Tcycle
(FR) – Tcycle

(NOT FR) )/Tcycle
(FR) 

(%) 
Dietrich–Ruina frozen 180.9 
Dietrich–Ruina not frozen 137.5 

0,24 

Ruina frozen 79.2 
Ruina not frozen 125.6 

-0,58 

Chester–Higgs frozen  84.1 
Chester–Higgs not frozen 54.0 

0,36 
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years, has been found for both the constitutive laws. Then it can be easily noted that the seismic cycle can be 
also strongly affected by the constitutive parameters chosen since it was possible to achieve compatible cycle 
times, nevertheless different constitutive laws have been considered. 

 
 

 
 
Figure 5. Comparable Tcycle (approximately 123 years) obtained by properly tuning the constitutive 
parameters of the DR and RU governing models in not frozen conditions. To obtain this result we adopted 
the following values: a = 0.007, b = 0.016, L = 1.5 x 10-2 m for the DR law and a = 0.004, b = 0.013, L = 1.0 x 
10-2 m for the RU law, respectively.  
 
 

In conclusion, through the observations conducted so far, it can be interestingly stated that the seismic 
cycle is affected by several aspects including the recovery time elapsed between two subsequent instabilities 
and the corresponding traction and slip velocity. Indeed, referring to the DR simulations of Figure 3, it was 
appreciated that in the case of relatively low shear stress a less evident velocity weakening effect occurs, 
although the corresponding slip velocity peaks were so high (Figure 2a). Consequently, this can result in a 
greater recovery time and then in a greater recurrence time of the earthquake (Tcycle). Conversely, taking into 
account the CH simulations, higher traction peaks correspond to a stronger velocity weakening effect, which 
may produce a smaller recovery time and consequently also a lower seismic cycle.  
 
 
4. Summary  
 

The sliding event on an interface generates frictional heating leading to a variation of the temperature 
field on the fault and on its surroundings. The incorporation of such a thermal effect within the dynamics of 
the sliding motion on active faults was the real improvement that Chester & Higgs carried out on the 
previous Dieterich-Ruina’s and Ruina’s constitutive formulations. Indeed, take into account the temperature 
change is extremely important in the dynamic modeling of seismic events, since there is a large number of 
thermally-activated physical and chemical phenomena which may occur during an earthquake rupture and 
may influence its dynamic propagation [Bizzarri, 2010a].   

In this study we have mainly focused on the understanding of the effects that a particular rate- and 
state-constitutive law can exert on the seismic cycle span including its frozen and not frozen constrains.  

In particular, we have compared three constitutive laws, the DR, the RU and the CH laws (sections 2.1, 
2.2 and 2.3), in order to analyze their different ways of simulating the slip velocity and the shear stress time 
histories as well as the seismic cycle (recurrence time between subsequent failure events). 



 14 

The analytical formulation of the above-mentioned friction laws has been obtained by considering 
laboratory data obtained at relatively low sliding speeds; recent laboratory data suggest that other 
formulations of the governing law should be used, in order to include additional dissipation phenomena 
occurring during the coseisimic phase, such as the flash heating of micro-asperity contacts, the thermal 
pressurization of pore fluids, the hydrodynamic lubrication, the melting of rocks and gouge, etc. [see 
Bizzarri, 2010a for a review on this subject].  

We perform numerical calculations with the spring-slider analog fault model, briefly summarized in 
section 1. This model of fault in somehow simplistic, in that it implicitly assumes that all the properties of 
the fault are homogeneous (and therefore the considered material point-like fault considered here is fully 
representative of all points of an extended seismogenic fault). Moreover, it neglects the effects due to the 
dynamic load exerted by the points of the fault that are already slipping and releasing stress (readers can 
refer to Bizzarri and Belardinelli, 2008 for a detailed discussion on this issue). Indeed, the mass-spring 
analog fault model is not able to simulate the radiation of seismic waves in the elastic medium, as more 
complete fault models do through the inclusion of the media which surround the fault [Bizzarri and Cocco, 
2005 among many others]. 
 

Our numerical calculations demonstrate that the seismic cycle duration may depend on several factors: 
- the specific analytical formulation rate- and state-dependent constitutive law considered to govern the 

seismogenic fault; 
- the sliding velocity constrains, whether frozen or not frozen approximation is adopted; 
- the adopted constitutive parameters (a, b and L). 

 
Indeed, the behavior of a spring-slider system (and therefore the seismic cycle) also depends on the 

parameters of the model, such as the elastic constant of the spring, related to its critical value [e.g., Gu et al., 
1984], vibration period and so on, as discussed in detail by Erickson et al. [2008].  

 
In particular, our results clearly show that a spring-slider system governed by the CH constitutive law, 

compared to the DR and RU ones, needs a lower slip rate peak and a lower time interval to undergo to a 
seismic instability. Indeed, the earthquakes tend to occur earlier in the CH case probably because, such a 
constitutive model accounts for a further weakening effect due to the temperature evolution.  

Finally, we have also seen that the not frozen simulations promote a time advance of a seismic event 
and also provides shorter seismic cycle times with respect to the frozen simulation for both the DR and the 
CH laws. 

 
To finish, we want to highlight that the present results clearly demonstrate that the deterministic 

prediction of the earthquake occurrence  even in the simplest case of a single isolated fault with spatially 
homogeneous rheology  is markedly affected by the non obvious choice of the constitutive law which 
describes the time evolution of the frictional resistance. This has a clear impact within the seismic hazard 
assessment.  
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