
apporti
tecnici

Multi-Taper Spectra:
a Mathematica8 TM Function

Anno 2011_Numero 214

Istituto Nazionale di
Geofisica e Vulcanologia

t
ISSN 2039-7941

t

Direttore
Enzo Boschi

Editorial Board
Raffaele Azzaro (CT)
Sara Barsotti (PI)
Mario Castellano (NA)
Viviana Castelli (BO)
Rosa Anna Corsaro (CT)
Luigi Cucci (RM1)
Mauro Di Vito (NA)
Marcello Liotta (PA)
Simona Masina (BO)
Mario Mattia (CT)
Nicola Pagliuca (RM1)
Umberto Sciacca (RM1)
Salvatore Stramondo (CNT)
Andrea Tertulliani - Editor in Chief (RM1)
Aldo Winkler (RM2)
Gaetano Zonno (MI)

Segreteria di Redazione
Francesca Di Stefano - coordinatore
Tel. +39 06 51860068
Fax +39 06 36915617
Rossella Celi
Tel. +39 06 51860055
Fax +39 06 36915617

redazionecen@ingv.it

MULTI-TAPER SPECTRA: A MATHEMATICA8 TM FUNCTION

Edoardo Del Pezzo and Francesca Bianco

INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli - Osservatorio Vesuviano)

Anno 2011_Numero 214t

apporti
tecnici

ISSN 2039-7941

Index

Abstract 5

1. Introduction 5

2. A brief outline of MTA 5
2.1 Method outline 5
2.2 Definition of Resolution 6
2.3 Definition of Variance 6
2.4 Multi-Taper-Algorithm in Mathematica 8 7
2.5 The Routines MTS and MTSH 7

3. Application to synthetic data 8
3.1 Square wave 8
3.2 Application of the spectral routines MTS and MTSH to square wave
example and comparison with FOURIER 9

4. Discussion and comments 11

Appendix. Other examples 13

Acknowledgments 18

References 18

	

	 5	

Abstract

Two simple functions written in Mathematica 8 TM are here presented for a rapid multitaper spectral
estimation. Multitaper ensures an optimal spectral smoothing, as it reduces the variance of the amplitude
spectrum estimates using the technique of tapering the time series with a set of orthogonal functions, and
then optimally averaging the FFT of the tapered signals. The first Function uses the Slepian n_ prolate
functions as tapers, while the second Function uses Hermite Functions as tapers. Both Routines are tested
using a synthetic time serie as input. Multitaper smoothing is often used in the spectral analysis of seismic
and other geophysical data. The present functions may be useful for geophysicists who are Mathematica 8 TM
users.

1. Introduction

In numerous sectors of Geophysics spectral analysis is a routine tool for many applications. FFT is a
standard, implemented as internal routine in many languages like MATLAB, Mathematica or Maple.
Accuracy in frequency and amplitude of the spectral estimates becomes important in several geophysical
problems, like for istance the determination of the corner frequency of the seismic spectra, or the seeking of
particular frequency peaks of signal embedded into the seismic noise. Examples are so numerous that citing
becomes impractical. Problems that arises are a) that the computed spectra of time series are affected by
spectral leakage, caused the physical limitation of the time series and b) that frequency resolution and
variance of the spectral estimate are directly proportional. Smoothing the spectra becomes thus necessary
when one wants to focus into the definition of the spectral shape of the signal under study. In this case, the
smoothing procedure is equivalent to filter out the spectral roughness, or the spectral-amplitude fluctuations
with frequency. Smoothing reduces variance but on the other hand reduces the frequency resolution, and a
compromise should be searched in order to achieve the best possible frequency resolution with the lowest
possible variance. Classical smoothing of the spectral estimates is generally and easily carried out using
running average procedures or filtering. Multi-taper algorithm (MTA) is a special smoothing, designed to
optimally reduce the bias resulting from leakage and in the same time reduce the variance of the spectral
estimates [Xu et al., 1999 and references therein].

In this paper we describe two Mathematica 8 functions which use the multitaper algorithm to calculate
the smoothed spectrum of a time serie, based on two different ways of generating the tapering functions in
time domain, and test both functions with synthetic data. The function itself is made freely downloadable by
any Mathematica user.

2. A brief outline of MTA

2.1 Method outline

Among the many papers on this argument, the method is well described for specific applications in
geophysics [Lees and Park 1995] and in applications in medicine [Xu et al. 1999]. The multi-taper method
consists in tapering the single data series with a set of K tapers, Fourier transforming the K tapered signals
and finally averaging them in order to obtain its optimally leakagereduced maximum-resolved spectral
estimate. The tapers can be calculated in two ways, producing almost equivalent results.

The first (and most used) is based on the calculation a Slepian sequence of K tapers. A Slepian
sequence of tapers is given by the eigenvectors of the tri-diagonal matrix S, given by its diagonal elements

((N – 1 – 2n)/2)2Cos[2π p/N], n = 0,, N – 1 (1)

and off-diagonal elements

n(N – n)/2, n = 1,N – 1 (2)

where N are the data samples and p is an integer. The user selects a suitable frequency band, B, for the data

	 6	

serie sampled at sps rate, greater or equal to the minimum frequency resolution, 1
T

, where T is the time

duration of the data series. B will be given by

B = 2p ⋅sps
N

 (3)

It can be demonstrated [Xu et al., 1999] that the number K of tapers should be set at

K < 2p – 1 (4)

Tipical values of p and K in practical analysis are 3 and 5. For p = K = 1 the method yields the single taper
(non-smoothed) Fourier Transform of the signal.

Once that eigenvalues λk and corresponding eigenvectors wk of S have been calculated, the MTA
“eigenspectra” can be estimated with

Yk f() = wn
n=1

N

∑ k xne
i2π fn/sps (5)

and their average, weighted for the respective eigenvalues, is an estimate of MTA spectrum

Y (f) = Σk=0
K−1λ−1

k |Yk (f) |
2

Σk=0
K−1λ−1

k

 (6)

The second way to calculate tapers is using the Hermite functions. The k-th order Hermite function, hk (t); is
defined by

hk (t) = π
−1/4 (2k k!)−1/2 t − d

dt
⎛
⎝⎜

⎞
⎠⎟
ke− t

2 /2 (7)

From equation (7) it is easy to calculate the discrete hk

n corresponding to wk
n used in equation (5). Differently

from using Slepian functions, the estimate of the MTA spectrum using Hermite functions, correspondent to
equation (6), is done with no weights in the average, and is given by

YH (f) =
Σk=0
K−1 |Yk (f) |

2

K
 (8)

2.2 Definition of Resolution
It is well known from spectral analysis that frequency resolution, Rƒ, in case of no smoothing is given by

Rf =
1
T

 (9)

where T is the duration of the time series sample. Effective resolution in case of smoothing is KRf

2.3 Definition of Variance
Variance can be defined as the sum of two terms:

θ =
Σk=1
K Uk

* 0()Yk f0()
Σk=1
K |Uk 0() |2

2

|Uk 0() |2
k=1

K

∑ (10)

	 7	

and

ψ = Yk f0()− Uk
* 0()Yk f0()k=1

K∑
Uk 0() 2

k=1

K∑
Uk 0()

k=1

K

∑ 2 (11)

where Uk is the Fourier Transform of the k-th taper.

The random variable

F f() = K −1() θ
ψ

 (12)

obeys a Fisher law with 2K–2 degrees of freedom. Uncertainty can be thus estimated calculating the quantity
in equation 12.

2.4 Multi-Taper-Algorithm in Mathematica 8

In this paper we describe two Mathematica 8 functions which use the multitaper algorithm to calculate
the smoothed spectrum of a time serie, based on both ways of generating the tapering functions (Slepian or
Hermite) in time domain, and test both functions with synthetic data. The two functions are both freely
downloadable by any Mathematica user as explained in the following of the present report.

2.5 The Routines MTS and MTSH
Two routines are here defined: MTS and MTSH. The first uses Slepian tapers, the second hermite functions.
Both are single-channel routines. All the command lines are commented, and hence self-explicatory.

Clear["Global‘*"];
Hermite[k_,t_]:=*Exp[-0.5*t^2]*HermiteH[k-1,t];
(* The Hermite functions, based upon Hermite Polynomials*)
MTS[FileData_,p_,K_,sps_]:=Module[{NN=Length[FileData],pp=p,KK=K,fsamp=sps},
Factor1=(NN)^0.5/(*fsamp);FFmin1=Fourier[FileData]*Factor1;
AAA=DiagonalMatrix[Table[((NN-1-2*n)/2)2*Cos[2*Pi*pp/NN],
{n,0,NN-1}]]+DiagonalMatrix[Table[n*(NN-n)/2,
{n,1,NN-1}],1]+DiagonalMatrix[Table[n*(NN-n)/2,{n,1,NN-1}],-1];
weights=Eigenvalues[N[AAA],KK];Slep=Eigenvectors[N[AAA],KK];
Slepian=Table[Slep[[k,All]]/Max[Slep[[k,All]]],{k,1,KK}];
SpectralMatrix=Transpose[Table[Factor1*Fourier[FileData*Slepian[[k,All]]],{k,1,KK}]];
Spectrum=Table[\[Sqrt](()/()),{j,1,Length[SpectralMatrix]}];
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]];
Spectrum*RatioSm];(*Slepian Taper Routine*)
MTSH[FileData_,p_,K_,sps_]:=(*number of data should be odd!!!!*)
Module[{NN=Length[FileData],pp=p,KK=K,fsamp=sps},Factor1=(NN)^0.5/(*fsamp);
FFmin1=Fourier[FileData]*Factor1;
Hermitians=Table[Hermite[k,n/sps],{n,-(NN-1)/2,(NN-1)/2},{k,1,KK}];
mmm=Table[Max[Hermitians[[All,k]]],{k,1,KK}];
Hrmtns=Transpose[Table[Hermitians[[All,k]]/mmm[[k]],{k,1,KK}]];
SpectralMatrix=Transpose[Table[Factor1*Fourier[FileData*Hrmtns[[All,k]]],{k,1,KK}]];
Spectrum=Table[\[Sqrt](),{j,1,Length[SpectralMatrix]}];
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]];
Spectrum*RatioSm](*Hermite functions routine*)

	 8	

Figure 1. Plot of the UnitBox function (or Π t −τ[]) as a function of the independent variable, t. In the
present case τ=3 (Lag=3).

3. Application to synthetic data

3.1 Square wave

This data example is a square wave type function (Figure 1) given by the Mathematica 8 function
UnitBox[x-Lag], or Π t −τ[] where Lag is the time Lag respect to the origin time. In this example, Lag is 3 s.
We remark that in the following Figures all the y-coordinates of the Fourier spectra are expressed as
“amplitude density” for a generic “amplitude” of the input signal, accounting for the Fourier Transform
definition.

Lag=3;
Plot[UnitBox[t-Lag],{t,0,10},Frame->True,PlotRange->{0,1.5},
LabelStyle->Medium,FrameLabel->{"t","\[Product][t-τ]"}]
SS[t_,L_]:=UnitBox[t-L];(* Definition of the example function*)
Table[SS[t,3],{t,0,10,0.01}];(*Numerical table of the example function,
at a sampling period of 0.01 s*)
MaxF=Max[Table[SS[t,3],{t,0,10,0.01}]](* max of the example function*)
1
MinF=Min[Table[SS[t,3],{t,0,10,0.01}]](* min of the example function*)
0
PPP=Plot[SS[t,3],{t,0,10},PlotLabel->"TestSquare-Wave",LabelStyle-
>{FontFamily->"Times",16},
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF}];
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"},LabelStyle-
>{FontFamily->"Helvetica",12}];
FourierTransform[UnitBox[t-L],t,ω]
(*MATHEMATICA-performed Fourier Transform of the example
function using the "standard" definition*)

	 9	

F1[f_,L_]:=(EI L 2*Pi*f Sinc[(2*Pi*f)/2])/;
(* Theoretical definition of the Fourier Transform of the example
function*)
FTW=Plot[Abs[F1[f,Lag]],{f,0,30},PlotRange->{{0,30},{0,0.5}},
PlotLabel->"Fourier Spectrum of Square-Wave",
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}];
WaFt=Show[FTW,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude
density"},
LabelStyle->{FontFamily->"Helvetica",12}];
(*Sampling the Test Function at 100 sps for 10 seconds (1001
points)*)
Ndati=1001;
fsampling=100;(*Ndati is the number of samples*)
X=Table[i/fsampling,{i,1,Ndati}];(*X is the vector containing the
sampling times*)
FF1=Table[SS[i/fsampling,Lag],{i,1,Ndati}];(*FF1 is the sampled
function at X. sps=100*)
FF1F=Transpose[Join[{X},{FF1}]] //N;
(* FF1F is the two-columns vector, containing times and corresponding
samples of the example function*);
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF},Frame->True,
Joined->True,FrameLabel->{"Time (s)","Wavelet Amplitude","Sampled
SquareWave"},
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]},
PlotRange->{2*MinF,2*MaxF}](*The Signal Plot*);
GraphicsRow[{Tewa,WaFt}]

GraphicsRow[{Sawa,WaFt}];(*This plot can be activated to check if the sampled signal corresponds to the
theoretical one*)

3.2 Application of the spectral routines MTS and MTSH to square wave example and comparison with
FOURIER

As well known, the Fourier Transform can be defined in several ways. In the present example we

define the Fourier transform of a function ƒ(t); the quantity 1
2π

f t()
−∞

∞

∫ ei iω itdt . Numerical Fourier

transform is very often carried out using the so called Cooley-Tukey algorithm universally known as FFT.
This algorithm is implemented in the Mathematica 8 routine FOURIER, which calculates,
1
n

urr=1

n∑ e2π i r−1() s−1()/n where ur is the r-th sample of the signal under study, n is the number of samples and s is

the transformed variable (frequency if the signal is time-sampled). 1
n

is a coefficient used by Mathematica
8. Other softwares may use different normalizations. To re-obtain the correct definition of Fourier transform
it is necessary to multiply the result obtained by FOURIER by the following quantity:

Factor1= Ndati / fsampling (13)

The normalization factor for the two routines MTS and MTSH is chosen in such a way that the smoothed
spectrum, FSm ω() and the non-smoothed spectrum, F ω() , have the same energy:

FSm ω()
0

ωn

∫ dω = F ω()
0

ωn

∫ dω

where ωn is the Nyquist frequency.

	 10	

Figure 2. The square wave (left panel) pulse, plotted as a function of time, t, and its Fourier spectrum (right
panel) plotted as a function of frequency (Hz).

Factor1=(Ndati)^0.5/(*fsampling);
(* This is the scale factor utilized by MATHEMATICA in the
Routine FOURIER*)
FFmin1=Fourier[FF1]*Factor1;
7
(* Normalized numerical Fourier Trasform*)
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier
Transform*)
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite)
Fourier Transform*)
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}];(*Frequencies [Hz]*)
Dimensions[FFmts]
{1001}
Dimensions[fre]
{1001}
Dimensions[FFmts]
{1001}
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N;
(*Files utilized for plotting results*)
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N;
(*Files utilized for plotting results*)
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N;
(*Files utilized for plotting results*)
Spe=ListPlot[FFmin1F,PlotRange->{{0,10},{0,1}},PlotRange->Full,Joined-
>True,
PlotLabel->"Numerical Fourier Transform of Square Pulse",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}];
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,10},{0,0.5}},
Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude
Density"},
PlotLabel->"Smoothed Fourier Spectrum of Square Pulse",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Black,Thickness[0.005]}];
Teo=Plot[{0.02+Abs[F1[f,Lag]]},{f,0,10},PlotRange->{0,0.5},
PlotLabel->"Analytical Fourier Transform of Square Pulse",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Orange,Thickness[0.005]}];
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency
(Hz)","Amplitude Density"},

	 11	

LabelStyle->{FontFamily->"Times",16},PlotLabel->"Comparison
between Theoretical and numerical"];
GraphicsRow[{smooth,teospe}]

Show[{teospe,smooth},PlotLabel->"Comparison between Theoretical,
numerical and smoothed"]

4. Discussion and comments

The two Routines MTS and MTSH are here implemented in Mathematica 8. They should work also in
previous Mathematica releases, but this has been not tested. A different normalization (the present saves the
spectral energy respect to that calculated with the non smoothed version) can be easily achieved modifying
the last two rows:
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]];Spectrum*RatioSm
Instead of the mean (which is proportional to the square root of Energy) one can calculate other
normalization factors. One that saves the amplitude is given by
RatioSm=Max[Abs[FFmin1]]/Max[Abs[Spectrum]];Spectrum*RatioSm
The user may substitute this last two rows into the two MTS and MTSH routines.

The coefficient of the Fourier Transform utilized in the present paper is 1
2π

, taken from the default

definition F ω() = 1
2π

f t()
−∞

∞

∫ ei iω itdt . If the user needs to change definition, he/she should use a

normalization factor for the internal routine FOURIER different from Factor1.
An user could a) copy the bold part of the present report directly into a Mathematica notebook or b) ask to
the authors the .nb file writing at the following e-mail address: edoardo.delpezzo@ov.ingv.it.

Figure 3. Left panel shows the smoothed Fourier spectrum of the Square Pulse. Red curve - Slepian tapers.
Black curve - Hermite tapers. Right Panel shows the comparison between theoretical (Orange curve) and
numerical (Blue curve) non-smoothed Fourier spectrum of the square pulse.

	 12	

Figure 4. Smoothed Fourier spectrum of the Square Pulse, overimposed to the theoretical and numerical
non-smoothed Fourier spectrum. As in Figure 3, the red curve represents Slepian tapers, the black curve the
Hermite tapers, the orange curve is the theoretical Fourier spectrum, whilst the blue curve is the numerical
one. The shift between orange and blue curve (0.01) is added for clarity in visualization.

	 13	

Appendix. Other examples

Other examples are here presented. Synthetic data are generated sampling a) a Sine wave function, b)
a Sine-Type wavelet function.

a) Sine wave function given by S(t) = 3Sin [2πƒ1t]+5Sin [2 πƒ2t]

f1=2;
f2=12; SS[t_]:=3*Sin[2*Pi*f1*t]+5*Sin[2*Pi*f2*t];(* Definition of
the example function*)
Table[SS[t],{t,0,10,0.01}];(*Numerical table of the example function,
at a sampling period of 0.01 s*)
MaxF=Max[Table[SS[t],{t,0,10,0.01}]](* max of the example function*)
7.60845
MinF=Min[Table[SS[t],{t,0,10,0.01}]](* min of the example function*)
-7.60845
PPP=Plot[SS[t],{t,0,10},PlotLabel->"TestSine-Function",LabelStyle-
>{FontFamily->"Times",16},
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF},
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}],Line[{{0,MinF},{10,MinF}}]}];
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"},
LabelStyle->{FontFamily->"Helvetica",12}];
FourierTransform[3*Sin[2*Pi*fa*t]+5*Sin[2*Pi*fb*t],t,ω]
(*MATHEMATICA-performed Fourier Transform of the example function using the "standard" definition*)
3 I DiracDelta[-2 fa π+ω]-3 I DiracDelta[2 fa π+ω]+5 I DiracDelta[-
2 fb π+ω]-5 I DiracDelta[2 fb π+ω]
F1[f_,fa_,fb_]:=3 I DiscreteDelta[-2 fa π+2*Pi*f]-3 I DiscreteDelta[2
fa π+2*Pi*f]
+5 I DiscreteDelta[-2 fb π+2*Pi*f]-5 I DiscreteDelta[2 fb π+2*Pi*f];
(* Definition of the Fourier Transform of the example function*)
FTW=ListPlot[Table[{f,Abs[F1[f,f1,f2]]},{f,0,50,0.01}],PlotRange-
>{0,10},
Joined->True,PlotLabel->"Fourier Spectrum of Sine-Function",
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}];

Figure 5. Left panel: Plot of the Sine function as function of the independent variable. Right Panel:
Theoretical Fourier Spectrum of the function plotted at left.

	 14	

WaFt=Show[FTW,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude
density"},
LabelStyle->{FontFamily->"Helvetica",12}];
GraphicsRow[{Tewa,WaFt}]

Ndati=1001;
fsampling=100;
X=Table[i/fsampling,{i,1,Ndati}];
FF1=Table[SS[i/fsampling],{i,1,Ndati}];
FF1F=Transpose[Join[{X},{FF1}]] //N;
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF},Frame->True,Joined-
>True,
FrameLabel->{"Time (s)","Sine Amplitude","Sampled Sine"},
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]},
PlotRange->{2*MinF,2*MaxF},Epilog->{Dashing[{0.015,0.015}],
Line[{{0,MaxF},{10,MaxF}}],Line[{{0,MinF},{10,MinF}}]}](*FF
è il segnale da analizzare*);
GraphicsRow[{Sawa,Tewa}];
Factor1=(Ndati)^0.5/(*fsampling);(* This is the scale factor utilized
by MATHEMATICA in the Routine FOURIER*)
FFmin1=Fourier[FF1]*Factor1;(* Normalized numerical Fourier Trasform*)
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier
Transform*)
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite)
Fourier Transform*)
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}];
(*Frequencies [Hz]*)
Dimensions[FFmts]
{1001}
Dimensions[fre]
{1001}
Dimensions[FFmts]
{1001}
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N;
(*Files utilized for plotting results*)
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N;
(*Files utilized for plotting results*)
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N;
(*Files utilized for plotting results*)
Spe=ListPlot[FFmin1F,PlotRange->{{0,20},{0,10}},PlotRange->Full,
Joined->True,PlotLabel->"Numerical Fourier Spectrum of Sine-
Function",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Thickness[0.005]}];
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,20},{0,10}},
Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude
density"},
PlotLabel->"Smoothed Fourier Spectrum of Sine function",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}];
Teo=ListPlot[Table[{f,Abs[F1[f,f1,f2]]},{f,0,20,0.01}],
PlotRange->{0,10},Joined->True,PlotLabel->"Fourier Spectrum
of Sine-Function",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Black,Thickness[0.005]}];
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency
(Hz)","Amplitude density"},
LabelStyle->{FontFamily->"Times",16},
PlotLabel->"Comparison between Theoretical and Numerical"];

	 15	

GraphicsRow[{smooth,teospe}]
Show[{teospe,smooth},PlotLabel->"Comparison between Theoretical,
Numerical and Smoothed"]

Figure 6. Smoothed numerical spectra (Blue - Hermite smoothing, Green - Slepian smoothing) of Sine
function (left panel). A comparison between the theoretical spectrum (black) and the non smoothed
numerical spectrum (red) in the right panel.

b) a Sine-Type wavelet function

This is given by − 2e
−
t−τ()2
σ 2 t −τ()
σ 2 , where σ is associated with the time duration and τ is the time of the

first zero-crossing. In this example, σ is 0.6 s and τ=3 s.

sigma=0.6;t0=3;
SS[t_]:=-((2 (t-t0))/sigma2);
(* Definition of the example function*)
Table[SS[t],{t,0,10,0.01}];(*Numerical table of the example function,
at a sampling period of 0.01 s*)
MaxF=Max[Table[SS[t],{t,0,10,0.01}]](* max of the example function*)
1.42946
MinF=Min[Table[SS[t],{t,0,10,0.01}]](* min of the example function*)
-1.42946
PPP=Plot[SS[t],{t,0,10},PlotLabel->"Test Sine-Wavelet",LabelStyle-
>{FontFamily->"Times",16},
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF},
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}],
Line[{{0,MinF},{10,MinF}}],Line[{{t0,MinF},{t0,MaxF}}]}];
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"},
LabelStyle->{FontFamily->"Times",16}];
FourierTransform[-((2 (t-τ))/σ2),t,ω]
(*MATHEMATICA-performed Fourier Transform of the example
function using the "standard" definition*)
-((I (1/σ^2)3/2 σ4 ω)/)
F1[f_,sig_,to_]:=-((I (1/sig^2)3/2 sig4 2*Pi*f)/);
(* Definition of the Fourier Transform of the example function*)
FTW=Plot[Abs[F1[f,sigma,t0]],{f,0,10},PlotRange->Full,

	 16	

Figure 7. The spectra of Figure 6 superimposed one to each other: smoothed numerical spectra (Blue -
Hermite smoothing, Green - Slepian smoothing) of Sine function superimposed to the theoretical spectrum
(black) and to the non smoothed numerical spectrum (red).

PlotLabel->"Fourier Spectrum of Sine-Wavelet",
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}];
WaFt=Show[FTW,Frame->True,
FrameLabel->{"Frequency (Hz)","Amplitude density"},
LabelStyle->{FontFamily->"Helvetica",12}];
GraphicsRow[{Tewa,WaFt}]
Ndati=1001;
fsampling=100;
X=Table[i/fsampling,{i,1,Ndati}];
FF1=Table[SS[i/fsampling],{i,1,Ndati}];
FF1F=Transpose[Join[{X},{FF1}]] //N;
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF},
Frame->True,Joined->False,FrameLabel->{"Time (s)","Wavelet Amplitude","
Sampled Wavelet"},
LabelStyle->{FontFamily->"Helvetica",12},
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF},
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}],
Line[{{0,MinF},{10,MinF}}],Line[{{t0,MinF},{t0,MaxF}}]}]
(*FF è il segnale da analizzare*); Factor1=(Ndati)^0.5/(*fsampling);
(* This is the scale factor utilized by MATHEMATICA in the Routine FOURIER*)
FFmin1=Fourier[FF1]*Factor1;(* Normalized numerical Fourier Trasform*)
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier
Transform*)
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite)
Fourier Transform*)
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}];(*Frequencies [Hz]*)
Dimensions[FFmts]
{1001}

	 17	

Figure 8. Left panel: plot of the Sine-wavelet function, as a function of time. Right panel: its Fourier
spectrum (Theoretical).

Dimensions[fre]
{1001}
Dimensions[FFmts]
{1001}
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N;
(*Files utilized for plotting results*)
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N;
(*Files utilized for plotting results*)
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N;
(*Files utilized for plotting results*)
Spe=ListPlot[FFmin1F,PlotRange->{{0,10},{0,1}},PlotRange->Full,
Joined->True,PlotLabel->"Numerical Fourier Transform of Cosine
Wavelet",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Thickness[0.005]}];
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,10},{0,1}},

Figure 9. Left panel: Smoothed (Blue Hermite smoothing. Green Slepian smoothing) Fourier spectrum of
the Sine-wavelet. Righ panel: Theoretical (Red) and numerical (Black, non smoothed) Fourier spectrum of
Sine-wavelet.

	 18	

Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude
density"},
PlotLabel->"Smoothed Fourier Spectrum of Wavelet",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}];
Teo=Plot[{0.04+Abs[F1[f,sigma,t0]]},{f,0,10},PlotRange->{0,1},
PlotLabel->"Analytical Fourier Spectrum of Wavelet",
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Black,Thickness[0.005]}];
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency
(Hz)","Amplitude density"},
LabelStyle->{FontFamily->"Times",16},
PlotLabel->"Comparison between Theoretical and numerical"];
GraphicsRow[{smooth,teospe}]

Acknowledgments

Mathematica 8 license in use from the authors has been financed by project UNREST (INGV-DPC).
The code (.nb) can be freely downloadable at the following site: http://istituto.ingv.it/l-ingv/produzione-
scientifica/rapporti-tecnici-ingv/copy_of_numeri-pubblicati-2010/2011-12-16.0210434567/download.

References

Yan Xu, Simon Haykin, and Ronald J. Racine, (1999). Multiple Window Time-Frequency Distribution and

Coherence of EEG Using Slepian Sequences and Hermite Functions, IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, VOL. 46, NO. 7. pp 861-866.

Jonathan Lees and Jeffrey Park (1995). Multiple Taper Spectral Analysis: a Stand-Alone C-Subroutine.
Computer and Geosciences, 21, 2, 199-236 19.	

Coordinamento editoriale e impaginazione
Centro Editoriale Nazionale | INGV

Progetto grafico e redazionale
Daniela Riposati | Laboratorio Grafica e Immagini | INGV

© 2011 INGV Istituto Nazionale di Geofisica e Vulcanologia
Via di Vigna Murata, 605

00143 Roma
Tel. +39 06518601 Fax +39 065041181

http://www.ingv.it

Istituto Nazionale di Geofisica e Vulcanologia

