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Abstract 
 

Two simple functions written in Mathematica 8 TM are here presented for a rapid multitaper spectral 
estimation. Multitaper ensures an optimal spectral smoothing, as it reduces the variance of the amplitude 
spectrum estimates using the technique of tapering the time series with a set of orthogonal functions, and 
then optimally averaging the FFT of the tapered signals. The first Function uses the Slepian n_ prolate 
functions as tapers, while the second Function uses Hermite Functions as tapers. Both Routines are tested 
using a synthetic time serie as input. Multitaper smoothing is often used in the spectral analysis of seismic 
and other geophysical data. The present functions may be useful for geophysicists who are Mathematica 8 TM 
users. 
 
 
1. Introduction 
 

In numerous sectors of Geophysics spectral analysis is a routine tool for many applications. FFT is a 
standard, implemented as internal routine in many languages like MATLAB, Mathematica or Maple. 
Accuracy in frequency and amplitude of the spectral estimates becomes important in several geophysical 
problems, like for istance the determination of the corner frequency of the seismic spectra, or the seeking of 
particular frequency peaks of signal embedded into the seismic noise. Examples are so numerous that citing 
becomes impractical. Problems that arises are a) that the computed spectra of time series are affected by 
spectral leakage, caused the physical limitation of the time series and b) that frequency resolution and 
variance of the spectral estimate are directly proportional. Smoothing the spectra becomes thus necessary 
when one wants to focus into the definition of the spectral shape of the signal under study. In this case, the 
smoothing procedure is equivalent to filter out the spectral roughness, or the spectral-amplitude fluctuations 
with frequency. Smoothing reduces variance but on the other hand reduces the frequency resolution, and a 
compromise should be searched in order to achieve the best possible frequency resolution with the lowest 
possible variance. Classical smoothing of the spectral estimates is generally and easily carried out using 
running average procedures or filtering. Multi-taper algorithm (MTA) is a special smoothing, designed to 
optimally reduce the bias resulting from leakage and in the same time reduce the variance of the spectral 
estimates [Xu et al., 1999 and references therein]. 

In this paper we describe two Mathematica 8 functions which use the multitaper algorithm to calculate 
the smoothed spectrum of a time serie, based on two different ways of generating the tapering functions in 
time domain, and test both functions with synthetic data. The function itself is made freely downloadable by 
any Mathematica user. 

 
 

2. A brief outline of MTA 
 
2.1 Method outline 

Among the many papers on this argument, the method is well described for specific applications in 
geophysics [Lees and Park 1995] and in applications in medicine [Xu et al. 1999]. The multi-taper method 
consists in tapering the single data series with a set of K tapers, Fourier transforming the K tapered signals 
and finally averaging them in order to obtain its optimally leakagereduced maximum-resolved spectral 
estimate. The tapers can be calculated in two ways, producing almost equivalent results. 

The first (and most used) is based on the calculation a Slepian sequence of K tapers. A Slepian 
sequence of tapers is given by the eigenvectors of the tri-diagonal matrix S, given by its diagonal elements 
 

((N – 1 – 2n)/2)2Cos[2π p/N], n = 0, ......, N – 1      (1) 
 

and off-diagonal elements 
 

n(N – n)/2, n = 1, ......N – 1        (2) 
 
where N are the data samples and p is an integer. The user selects a suitable frequency band, B, for the data 
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serie sampled at sps rate, greater or equal to the minimum frequency resolution, 1
T

, where T is the time 

duration of the data series. B will be given by 
 

B = 2p ⋅sps
N

         (3) 

 
It can be demonstrated [Xu et al., 1999] that the number K of tapers should be set at  
 

K < 2p – 1          (4) 
 
Tipical values of p and K in practical analysis are 3 and 5. For p = K = 1 the method yields the single taper 
(non-smoothed) Fourier Transform of the signal. 
 
Once that eigenvalues λk and corresponding eigenvectors wk of S have been calculated, the MTA 
“eigenspectra” can be estimated with 
 

Yk f( ) = wn
n=1

N

∑ k xne
i2π fn/sps        (5) 

 
and their average, weighted for the respective eigenvalues, is an estimate of MTA spectrum 
 

Y ( f ) = Σk=0
K−1λ−1

k |Yk ( f ) |
2

Σk=0
K−1λ−1

k

       (6) 

 
The second way to calculate tapers is using the Hermite functions. The k-th order Hermite function, hk (t); is 
defined by 
 

hk (t) = π
−1/4 (2k k!)−1/2 t − d

dt
⎛
⎝⎜

⎞
⎠⎟
ke− t

2 /2       (7) 

 
From equation (7) it is easy to calculate the discrete hk

n corresponding to wk
n used in equation (5). Differently 

from using Slepian functions, the estimate of the MTA spectrum using Hermite functions, correspondent to 
equation (6), is done with no weights in the average, and is given by 
 

YH ( f ) =
Σk=0
K−1 |Yk ( f ) |

2

K
        (8) 

 
2.2 Definition of Resolution 
It is well known from spectral analysis that frequency resolution, Rƒ, in case of no smoothing is given by 
 

Rf =
1
T

           (9) 

 
where T is the duration of the time series sample. Effective resolution in case of smoothing is KRf 

 
 
2.3 Definition of Variance 
Variance can be defined as the sum of two terms: 
 

θ =
Σk=1
K Uk

* 0( )Yk f0( )
Σk=1
K |Uk 0( ) |2

2

|Uk 0( ) |2
k=1

K

∑       (10) 
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and 
 

ψ = Yk f0( )− Uk
* 0( )Yk f0( )k=1

K∑
Uk 0( ) 2

k=1

K∑
Uk 0( )

k=1

K

∑ 2      (11) 

 
where Uk is the Fourier Transform of the k-th taper. 
 
The random variable  
 

F f( ) = K −1( ) θ
ψ

         (12) 

 
obeys a Fisher law with 2K–2 degrees of freedom. Uncertainty can be thus estimated calculating the quantity 
in equation 12. 
 
2.4 Multi-Taper-Algorithm in Mathematica 8 

In this paper we describe two Mathematica 8 functions which use the multitaper algorithm to calculate 
the smoothed spectrum of a time serie, based on both ways of generating the tapering functions (Slepian or 
Hermite) in time domain, and test both functions with synthetic data. The two functions are both freely 
downloadable by any Mathematica user as explained in the following of the present report. 
 
2.5 The Routines MTS and MTSH 
Two routines are here defined: MTS and MTSH. The first uses Slepian tapers, the second hermite functions. 
Both are single-channel routines. All the command lines are commented, and hence self-explicatory. 
 
Clear["Global‘*"]; 
Hermite[k_,t_]:=*Exp[-0.5*t^2]*HermiteH[k-1,t]; 
(* The Hermite functions, based upon Hermite Polynomials*) 
MTS[FileData_,p_,K_,sps_]:=Module[{NN=Length[FileData],pp=p,KK=K,fsamp=sps}, 
Factor1=(NN)^0.5/(*fsamp);FFmin1=Fourier[FileData]*Factor1; 
AAA=DiagonalMatrix[Table[((NN-1-2*n)/2)2*Cos[2*Pi*pp/NN], 
{n,0,NN-1}]]+DiagonalMatrix[Table[n*(NN-n)/2, 
{n,1,NN-1}],1]+DiagonalMatrix[Table[n*(NN-n)/2,{n,1,NN-1}],-1]; 
weights=Eigenvalues[N[AAA],KK];Slep=Eigenvectors[N[AAA],KK]; 
Slepian=Table[Slep[[k,All]]/Max[Slep[[k,All]]],{k,1,KK}]; 
SpectralMatrix=Transpose[Table[Factor1*Fourier[FileData*Slepian[[k,All]]],{k,1,KK}]]; 
Spectrum=Table[\[Sqrt](()/()),{j,1,Length[SpectralMatrix]}]; 
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]]; 
Spectrum*RatioSm];(*Slepian Taper Routine*) 
MTSH[FileData_,p_,K_,sps_]:=(*number of data should be odd!!!!*) 
Module[{NN=Length[FileData],pp=p,KK=K,fsamp=sps},Factor1=(NN)^0.5/(*fsamp); 
FFmin1=Fourier[FileData]*Factor1; 
Hermitians=Table[Hermite[k,n/sps],{n,-(NN-1)/2,(NN-1)/2},{k,1,KK}]; 
mmm=Table[Max[Hermitians[[All,k]]],{k,1,KK}]; 
Hrmtns=Transpose[Table[Hermitians[[All,k]]/mmm[[k]],{k,1,KK}]]; 
SpectralMatrix=Transpose[Table[Factor1*Fourier[FileData*Hrmtns[[All,k]]],{k,1,KK}]]; 
Spectrum=Table[\[Sqrt](),{j,1,Length[SpectralMatrix]}]; 
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]]; 
Spectrum*RatioSm](*Hermite functions routine*) 
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Figure 1. Plot of the UnitBox function (or Π t −τ[ ] ) as a function of the independent variable, t. In the 
present case τ=3 (Lag=3). 
 
 
 
3. Application to synthetic data 
 
3.1 Square wave 

This data example is a square wave type function (Figure 1) given by the Mathematica 8 function 
UnitBox[x-Lag], or Π t −τ[ ]  where Lag is the time Lag respect to the origin time. In this example, Lag is 3 s. 
We remark that in the following Figures all the y-coordinates of the Fourier spectra are expressed as 
“amplitude density” for a generic “amplitude” of the input signal, accounting for the Fourier Transform 
definition. 
 
Lag=3; 
Plot[UnitBox[t-Lag],{t,0,10},Frame->True,PlotRange->{0,1.5}, 
LabelStyle->Medium,FrameLabel->{"t","\[Product][t-τ]"}] 
SS[t_,L_]:=UnitBox[t-L];(* Definition of the example function*) 
Table[SS[t,3],{t,0,10,0.01}];(*Numerical table of the example function, 
at a sampling period of 0.01 s*) 
MaxF=Max[Table[SS[t,3],{t,0,10,0.01}]](* max of the example function*) 
1 
MinF=Min[Table[SS[t,3],{t,0,10,0.01}]](* min of the example function*) 
0 
PPP=Plot[SS[t,3],{t,0,10},PlotLabel->"TestSquare-Wave",LabelStyle- 
>{FontFamily->"Times",16}, 
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF}]; 
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"},LabelStyle- 
>{FontFamily->"Helvetica",12}]; 
FourierTransform[UnitBox[t-L],t,ω] 
(*MATHEMATICA-performed Fourier Transform of the example 
function using the "standard" definition*) 
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F1[f_,L_]:=(EI L 2*Pi*f Sinc[(2*Pi*f)/2])/; 
(* Theoretical definition of the Fourier Transform of the example 
function*) 
FTW=Plot[Abs[F1[f,Lag]],{f,0,30},PlotRange->{{0,30},{0,0.5}}, 
PlotLabel->"Fourier Spectrum of Square-Wave", 
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}]; 
WaFt=Show[FTW,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude 
density"}, 
LabelStyle->{FontFamily->"Helvetica",12}]; 
(*Sampling the Test Function at 100 sps for 10 seconds (1001 
points)*) 
Ndati=1001; 
fsampling=100;(*Ndati is the number of samples*) 
X=Table[i/fsampling,{i,1,Ndati}];(*X is the vector containing the 
sampling times*) 
FF1=Table[SS[i/fsampling,Lag],{i,1,Ndati}];(*FF1 is the sampled 
function at X. sps=100*) 
FF1F=Transpose[Join[{X},{FF1}]] //N; 
(* FF1F is the two-columns vector, containing times and corresponding 
samples of the example function*); 
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF},Frame->True, 
Joined->True,FrameLabel->{"Time (s)","Wavelet Amplitude","Sampled 
SquareWave"}, 
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}, 
PlotRange->{2*MinF,2*MaxF}](*The Signal Plot*); 
GraphicsRow[{Tewa,WaFt}] 
 
GraphicsRow[{Sawa,WaFt}];(*This plot can be activated to check if the sampled signal corresponds to the 
theoretical one*) 
 
 
3.2 Application of the spectral routines MTS and MTSH to square wave example and comparison with 
FOURIER 

As well known, the Fourier Transform can be defined in several ways. In the present example we 

define the Fourier transform of a function ƒ(t); the quantity 1
2π

f t( )
−∞

∞

∫ ei iω itdt . Numerical Fourier 

transform is very often carried out using the so called Cooley-Tukey algorithm universally known as FFT. 
This algorithm is implemented in the Mathematica 8 routine FOURIER, which calculates, 
1
n

urr=1

n∑ e2π i r−1( ) s−1( )/n where ur is the r-th sample of the signal under study, n is the number of samples and s is 

the transformed variable (frequency if the signal is time-sampled). 1
n

is a coefficient used by Mathematica 
8. Other softwares may use different normalizations. To re-obtain the correct definition of Fourier transform 
it is necessary to multiply the result obtained by FOURIER by the following quantity: 
 

Factor1= Ndati / fsampling         (13) 
 
The normalization factor for the two routines MTS and MTSH is chosen in such a way that the smoothed 
spectrum, FSm ω( ) and the non-smoothed spectrum, F ω( ) , have the same energy: 
 

FSm ω( )
0

ωn

∫ dω = F ω( )
0

ωn

∫ dω  

 
where ωn is the Nyquist frequency. 
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Figure 2. The square wave (left panel) pulse, plotted as a function of time, t, and its Fourier spectrum (right 
panel) plotted as a function of frequency (Hz). 
 
 
 
Factor1=(Ndati)^0.5/(*fsampling); 
(* This is the scale factor utilized by MATHEMATICA in the 
Routine FOURIER*) 
FFmin1=Fourier[FF1]*Factor1; 
7 
(* Normalized numerical Fourier Trasform*) 
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier 
Transform*) 
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite) 
Fourier Transform*) 
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}];(*Frequencies [Hz]*) 
Dimensions[FFmts] 
{1001} 
Dimensions[fre] 
{1001} 
Dimensions[FFmts] 
{1001} 
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N; 
(*Files utilized for plotting results*) 
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N; 
(*Files utilized for plotting results*) 
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N; 
(*Files utilized for plotting results*) 
Spe=ListPlot[FFmin1F,PlotRange->{{0,10},{0,1}},PlotRange->Full,Joined- 
>True, 
PlotLabel->"Numerical Fourier Transform of Square Pulse", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}]; 
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,10},{0,0.5}}, 
Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude 
Density"}, 
PlotLabel->"Smoothed Fourier Spectrum of Square Pulse", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Black,Thickness[0.005]}]; 
Teo=Plot[{0.02+Abs[F1[f,Lag]]},{f,0,10},PlotRange->{0,0.5}, 
PlotLabel->"Analytical Fourier Transform of Square Pulse", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Orange,Thickness[0.005]}]; 
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency 
(Hz)","Amplitude Density"}, 
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LabelStyle->{FontFamily->"Times",16},PlotLabel->"Comparison 
between Theoretical and numerical"]; 
GraphicsRow[{smooth,teospe}] 
 
Show[{teospe,smooth},PlotLabel->"Comparison between Theoretical, 
numerical and smoothed"] 
 
 
4. Discussion and comments 
 

The two Routines MTS and MTSH are here implemented in Mathematica 8. They should work also in 
previous Mathematica releases, but this has been not tested. A different normalization (the present saves the 
spectral energy respect to that calculated with the non smoothed version) can be easily achieved modifying 
the last two rows: 
RatioSm=Mean[Abs[FFmin1]]/Mean[Abs[Spectrum]];Spectrum*RatioSm 
Instead of the mean (which is proportional to the square root of Energy) one can calculate other 
normalization factors. One that saves the amplitude is given by 
RatioSm=Max[Abs[FFmin1]]/Max[Abs[Spectrum]];Spectrum*RatioSm 
The user may substitute this last two rows into the two MTS and MTSH routines. 

The coefficient of the Fourier Transform utilized in the present paper is 1
2π

, taken from the default 

definition F ω( ) = 1
2π

f t( )
−∞

∞

∫ ei iω itdt . If the user needs to change definition, he/she should use a 

normalization factor for the internal routine FOURIER different from Factor1. 
An user could a) copy the bold part of the present report directly into a Mathematica notebook or b) ask to 
the authors the .nb file writing at the following e-mail address: edoardo.delpezzo@ov.ingv.it. 
 
 
 
 
 
 
 

 
 
Figure 3. Left panel shows the smoothed Fourier spectrum of the Square Pulse. Red curve - Slepian tapers. 
Black curve - Hermite tapers. Right Panel shows the comparison between theoretical (Orange curve) and 
numerical (Blue curve) non-smoothed Fourier spectrum of the square pulse. 
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Figure 4. Smoothed Fourier spectrum of the Square Pulse, overimposed to the theoretical and numerical 
non-smoothed Fourier spectrum. As in Figure 3, the red curve represents Slepian tapers, the black curve the 
Hermite tapers, the orange curve is the theoretical Fourier spectrum, whilst the blue curve is the numerical 
one. The shift between orange and blue curve ( 0.01) is added for clarity in visualization. 
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Appendix. Other examples 
 

Other examples are here presented. Synthetic data are generated sampling a) a Sine wave function, b) 
a Sine-Type wavelet function. 

 
a) Sine wave function given by S(t) = 3Sin [2πƒ1t]+5Sin [2 πƒ2t] 
 
f1=2; 
f2=12; SS[t_]:=3*Sin[2*Pi*f1*t]+5*Sin[2*Pi*f2*t];(* Definition of 
the example function*) 
Table[SS[t],{t,0,10,0.01}];(*Numerical table of the example function, 
at a sampling period of 0.01 s*) 
MaxF=Max[Table[SS[t],{t,0,10,0.01}]](* max of the example function*) 
7.60845 
MinF=Min[Table[SS[t],{t,0,10,0.01}]](* min of the example function*) 
-7.60845 
PPP=Plot[SS[t],{t,0,10},PlotLabel->"TestSine-Function",LabelStyle- 
>{FontFamily->"Times",16}, 
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF}, 
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}],Line[{{0,MinF},{10,MinF}}]}]; 
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"}, 
LabelStyle->{FontFamily->"Helvetica",12}]; 
FourierTransform[3*Sin[2*Pi*fa*t]+5*Sin[2*Pi*fb*t],t,ω] 
(*MATHEMATICA-performed Fourier Transform of the example function using the "standard" definition*) 
3 I DiracDelta[-2 fa π+ω]-3 I DiracDelta[2 fa π+ω]+5 I DiracDelta[- 
2 fb π+ω]-5 I DiracDelta[2 fb π+ω] 
F1[f_,fa_,fb_]:=3 I DiscreteDelta[-2 fa π+2*Pi*f]-3 I DiscreteDelta[2 
fa π+2*Pi*f] 
+5 I DiscreteDelta[-2 fb π+2*Pi*f]-5 I DiscreteDelta[2 fb π+2*Pi*f]; 
(* Definition of the Fourier Transform of the example function*) 
FTW=ListPlot[Table[{f,Abs[F1[f,f1,f2]]},{f,0,50,0.01}],PlotRange- 
>{0,10}, 
Joined->True,PlotLabel->"Fourier Spectrum of Sine-Function", 
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}]; 
 
 
 
 
 

 
 
Figure 5. Left panel: Plot of the Sine function as function of the independent variable. Right Panel: 
Theoretical Fourier Spectrum of the function plotted at left. 
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WaFt=Show[FTW,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude 
density"}, 
LabelStyle->{FontFamily->"Helvetica",12}]; 
GraphicsRow[{Tewa,WaFt}] 
 
Ndati=1001; 
fsampling=100; 
X=Table[i/fsampling,{i,1,Ndati}]; 
FF1=Table[SS[i/fsampling],{i,1,Ndati}]; 
FF1F=Transpose[Join[{X},{FF1}]] //N; 
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF},Frame->True,Joined- 
>True, 
FrameLabel->{"Time (s)","Sine Amplitude","Sampled Sine"}, 
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}, 
PlotRange->{2*MinF,2*MaxF},Epilog->{Dashing[{0.015,0.015}], 
Line[{{0,MaxF},{10,MaxF}}],Line[{{0,MinF},{10,MinF}}]}](*FF 
è il segnale da analizzare*); 
GraphicsRow[{Sawa,Tewa}]; 
Factor1=(Ndati)^0.5/(*fsampling);(* This is the scale factor utilized 
by MATHEMATICA in the Routine FOURIER*) 
FFmin1=Fourier[FF1]*Factor1;(* Normalized numerical Fourier Trasform*) 
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier 
Transform*) 
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite) 
Fourier Transform*) 
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}]; 
(*Frequencies [Hz]*) 
Dimensions[FFmts] 
{1001} 
Dimensions[fre] 
{1001} 
Dimensions[FFmts] 
{1001} 
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N; 
(*Files utilized for plotting results*) 
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N; 
(*Files utilized for plotting results*) 
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N; 
(*Files utilized for plotting results*) 
Spe=ListPlot[FFmin1F,PlotRange->{{0,20},{0,10}},PlotRange->Full, 
Joined->True,PlotLabel->"Numerical Fourier Spectrum of Sine- 
Function", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Thickness[0.005]}]; 
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,20},{0,10}}, 
Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude 
density"}, 
PlotLabel->"Smoothed Fourier Spectrum of Sine function", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}]; 
Teo=ListPlot[Table[{f,Abs[F1[f,f1,f2]]},{f,0,20,0.01}], 
PlotRange->{0,10},Joined->True,PlotLabel->"Fourier Spectrum 
of Sine-Function", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Black,Thickness[0.005]}]; 
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency 
(Hz)","Amplitude density"}, 
LabelStyle->{FontFamily->"Times",16}, 
PlotLabel->"Comparison between Theoretical and Numerical"]; 
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GraphicsRow[{smooth,teospe}] 
Show[{teospe,smooth},PlotLabel->"Comparison between Theoretical, 
Numerical and Smoothed"] 
 
 
 

 
 
Figure 6. Smoothed numerical spectra (Blue - Hermite smoothing, Green - Slepian smoothing) of Sine 
function (left panel). A comparison between the theoretical spectrum (black) and the non smoothed 
numerical spectrum (red) in the right panel. 
 
 
 
b) a Sine-Type wavelet function 

This is given by − 2e
−
t−τ( )2
σ 2 t −τ( )
σ 2 , where σ is associated with the time duration and τ is the time of the 

first zero-crossing. In this example, σ is 0.6 s and τ=3 s. 
 
sigma=0.6;t0=3; 
SS[t_]:=-((2 (t-t0))/sigma2); 
(* Definition of the example function*) 
Table[SS[t],{t,0,10,0.01}];(*Numerical table of the example function, 
at a sampling period of 0.01 s*) 
MaxF=Max[Table[SS[t],{t,0,10,0.01}]](* max of the example function*) 
1.42946 
MinF=Min[Table[SS[t],{t,0,10,0.01}]](* min of the example function*) 
-1.42946 
PPP=Plot[SS[t],{t,0,10},PlotLabel->"Test Sine-Wavelet",LabelStyle- 
>{FontFamily->"Times",16}, 
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF}, 
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}], 
Line[{{0,MinF},{10,MinF}}],Line[{{t0,MinF},{t0,MaxF}}]}]; 
Tewa=Show[PPP,Frame->True,FrameLabel->{"Time (s)","Amplitude"}, 
LabelStyle->{FontFamily->"Times",16}]; 
FourierTransform[-((2 (t-τ))/σ2),t,ω] 
(*MATHEMATICA-performed Fourier Transform of the example 
function using the "standard" definition*) 
-((I (1/σ^2)3/2 σ4 ω)/) 
F1[f_,sig_,to_]:=-((I (1/sig^2)3/2 sig4 2*Pi*f)/ ); 
(* Definition of the Fourier Transform of the example function*) 
FTW=Plot[Abs[F1[f,sigma,t0]],{f,0,10},PlotRange->Full, 
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Figure 7. The spectra of Figure 6 superimposed one to each other: smoothed numerical spectra (Blue - 
Hermite smoothing, Green - Slepian smoothing) of Sine function superimposed to the theoretical spectrum 
(black) and to the non smoothed numerical spectrum (red). 
 
 
PlotLabel->"Fourier Spectrum of Sine-Wavelet", 
LabelStyle->{FontFamily->"Helvetica",12},PlotStyle->{Black,Thickness[0.005]}]; 
WaFt=Show[FTW,Frame->True, 
FrameLabel->{"Frequency (Hz)","Amplitude density"}, 
LabelStyle->{FontFamily->"Helvetica",12}]; 
GraphicsRow[{Tewa,WaFt}] 
Ndati=1001; 
fsampling=100; 
X=Table[i/fsampling,{i,1,Ndati}]; 
FF1=Table[SS[i/fsampling],{i,1,Ndati}]; 
FF1F=Transpose[Join[{X},{FF1}]] //N; 
Sawa=ListPlot[{FF1F},PlotRange->{2*MinF,2*MaxF}, 
Frame->True,Joined->False,FrameLabel->{"Time (s)","Wavelet Amplitude"," 
Sampled Wavelet"}, 
LabelStyle->{FontFamily->"Helvetica",12}, 
PlotStyle->{Black,Thickness[0.005]},PlotRange->{2*MinF,2*MaxF}, 
Epilog->{Dashing[{0.015,0.015}],Line[{{0,MaxF},{10,MaxF}}], 
Line[{{0,MinF},{10,MinF}}],Line[{{t0,MinF},{t0,MaxF}}]}] 
(*FF è il segnale da analizzare*); Factor1=(Ndati)^0.5/(*fsampling); 
(* This is the scale factor utilized by MATHEMATICA in the Routine FOURIER*) 
FFmin1=Fourier[FF1]*Factor1;(* Normalized numerical Fourier Trasform*) 
FFmts=MTS[FF1,3,5,100];(* Normalized Smoothed (Slepian) Fourier 
Transform*) 
FFmtsH=MTSH[FF1,3,5,100];(* Normalized Smoothed (Hermite) 
Fourier Transform*) 
fre=Table[fsampling*(n-1)/Ndati,{n,1,Ndati}];(*Frequencies [Hz]*) 
Dimensions[FFmts] 
{1001} 
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Figure 8. Left panel: plot of the Sine-wavelet function, as a function of time. Right panel: its Fourier 
spectrum (Theoretical). 
 
 
 
 
Dimensions[fre] 
{1001} 
Dimensions[FFmts] 
{1001} 
FFmin1F=Transpose[Join[{fre},{Abs[FFmin1]}]] //N; 
(*Files utilized for plotting results*) 
FFsmooth=Transpose[Join[{fre},{Abs[FFmts]}]]//N; 
(*Files utilized for plotting results*) 
FFsmoothH=Transpose[Join[{fre},{Abs[FFmtsH]}]]//N; 
(*Files utilized for plotting results*) 
Spe=ListPlot[FFmin1F,PlotRange->{{0,10},{0,1}},PlotRange->Full, 
Joined->True,PlotLabel->"Numerical Fourier Transform of Cosine 
Wavelet", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Red,Thickness[0.005]}]; 
smooth=ListPlot[{FFsmooth,FFsmoothH},PlotRange->{{0,10},{0,1}}, 
 
 
 
 

 
 
Figure 9. Left panel: Smoothed (Blue Hermite smoothing. Green Slepian smoothing) Fourier spectrum of 
the Sine-wavelet. Righ panel: Theoretical (Red) and numerical (Black, non smoothed) Fourier spectrum of 
Sine-wavelet. 
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Joined->True,Frame->True,FrameLabel->{"Frequency (Hz)","Amplitude 
density"}, 
PlotLabel->"Smoothed Fourier Spectrum of Wavelet", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Green,Blue,Thickness[0.005]}]; 
Teo=Plot[{0.04+Abs[F1[f,sigma,t0]]},{f,0,10},PlotRange->{0,1}, 
PlotLabel->"Analytical Fourier Spectrum of Wavelet", 
LabelStyle->{FontFamily->"Times",16},PlotStyle->{Black,Thickness[0.005]}]; 
teospe=Show[{Teo,Spe},Frame->True,FrameLabel->{"Frequency 
(Hz)","Amplitude density"}, 
LabelStyle->{FontFamily->"Times",16}, 
PlotLabel->"Comparison between Theoretical and numerical"]; 
GraphicsRow[{smooth,teospe}] 
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