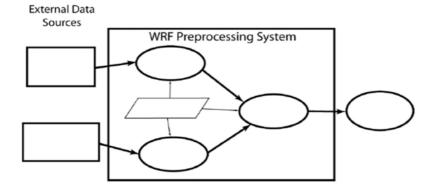

Selezione pubblica, per titoli ed esami, a n. 1 posto di Collaboratore Tecnico degli Enti di Ricerca - VI livello retributivo, con contratto di lavoro subordinato a tempo determinato presso l'Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania - Osservatorio Etneo – Area tematica: "Organizzazione e gestione di modelli meteorologici previsionali e acquisizione di dati meteorologici" – Codice bando: 1CTER-OE-06-2019/A (D.A.P. n. 268 del 17/06/2019 - Pubblicato sulla G.U. n. 54 del 09/07/2019)

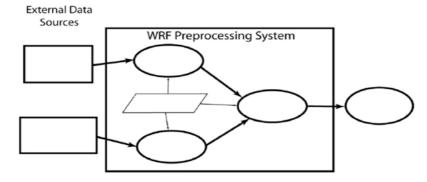
Prima prova scritta


Gruppo di domande A

- 1) Nello schema a blocchi disegnato sotto, inserire nelle posizioni corrette, il numero corrispondente alle seguenti definizioni:
 - 1 = metgrid
 - 2 = real.exe
 - 3 = Static Geographical Data
 - 4 = ungrib
 - 5 = GRIB data
 - 6 = geogrid
 - 7 = namelist.wps

- 2) Scrivere i comandi, per eseguire da Shell Linux, le seguenti operazioni:
 - a) Creare una directory di nome pippo >
 - b) Visualizzare i processi in esecuzione e le relative risorse utilizzate >
 - c) Visualizzare la directory corrente >
 - d) Aprire un editor di testo >
 - e) Eseguire un commando con i privilegi di super-utente >

3) A quale altitudine media, in metri, si trova la tropopausa: a) alle medie latitudini? b) alle latitudini polari? c) all'equatore? 4) Indicare una grandezza meteorologica di tipo scalare e una di tipo vettoriale. 5) Il candidato descriva brevemente la principale differenza tra i modelli Meteorologici Globali (GM) e i Modelli Meteorologici ad Area Limitata (LAM), e in quale modo questi ultimi potrebbero migliorare il sistema di previsione della dispersione delle ceneri vulcaniche. Gruppo di domande B 1) Scrivere i comandi, per eseguire da Shell Linux, le seguenti operazioni: a) Eseguire un commando con i privilegi di super-utente > b) Aprire un editor di testo > c) Visualizzare la directory corrente > d) Visualizzare i processi in esecuzione e le relative risorse utilizzate > e) Creare una directory di nome pippo > 2) Quale strumento meteorologico contiene al proprio interno una vaschetta basculante? 3) Indicare una grandezza meteorologica di tipo scalare ed una di tipo vettoriale. 4) Nello schema a blocchi disegnato sotto, inserire nelle posizioni corrette, il numero corrispondente alle seguenti definizioni: 1 = metgrid2 = real.exe3 = Static Geographical Data 4 = ungrib5 = GRIB data 6 = geogrid7 = namelist.wps



5) Per avere previsioni meteorologiche più dettagliate vengono utilizzati i Modelli ad Area Limitata (LAM). Il candidato ne descriva le principali caratteristiche, evidenziando le differenze tra questi e i Modelli Globali (GM). Inoltre descriva quale impiego potrebbero trovare i modelli LAM per la previsione della dispersione della nube di cenere vulcanica.

Gruppo di domande C

- 1) Quale strumento meteorologico utilizza come elemento sensibile delle capsule aneroidi?
- 2) Indicare la pressione media al livello del mare, una grandezza meteorologica di tipo scalare ed una di tipo vettoriale.
- 3) Scrivere i comandi, per eseguire da Shell Linux, le seguenti operazioni:
 - a) Visualizzare i processi in esecuzione e le relative risorse utilizzate >
 - b) Aprire un editor di testo >
 - c) Visualizzare la directory corrente >
 - d) Eseguire un commando con i privilegi di super-utente >
 - e) Creare una directory di nome pippo >
- 4) Nello schema a blocchi disegnato sotto, inserire nelle posizioni corrette, il numero corrispondente alle seguenti definizioni:
 - 1 = metgrid
 - 2 = real.exe
 - 3 = Static Geographical Data
 - 4 = ungrib
 - 5 = GRIB data

6 = geogrid 7 = namelist.wps

5) Quali sono i principali vantaggi che si ottengono dall'utilizzo dei modelli Meteorologici ad Area Limitata (LAM) rispetto ai Modelli Globali (GM)? Il candidato descriva brevemente come, a suo parere, i modelli Meteorologici possano migliorare la previsione della dispersione degli inquinanti atmosferici, incluse le nubi di cenere vulcanica.

Selezione pubblica, per titoli ed esami, a n. 1 posto di Collaboratore Tecnico degli Enti di Ricerca - VI livello retributivo, con contratto di lavoro subordinato a tempo determinato presso l'Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania - Osservatorio Etneo – Area tematica: "Organizzazione e gestione di modelli meteorologici previsionali e acquisizione di dati meteorologici" – Codice bando: 1CTER-OE-06-2019/A (D.A.P. n. 268 del 17/06/2019 - Pubblicato sulla G.U. n. 54 del 09/07/2019)

Seconda prova scritta

Esercizio 1

a) Compilare le parti mancanti del file *namelist.input* seguendo le indicazioni riportate di seguito:

Data e ora di inizio del RUN: **10 ottobre 2015 ore 00** Data o ora di fine del RUN: **13 ottobre 2015 ore 12**

Dati di input: GRIB GFS a 1hr

Estensione del dominio in celle: **100 x 100** Risoluzione spaziale del dominio: **9 km** Risoluzione temporale del dominio: **1 ora**

Formato dei file di output: NetCDF

Parametrizzazione del Planetary Boundary Layer: Schema YSU

Parametrizzazione della microfisica: Schema Ferrier

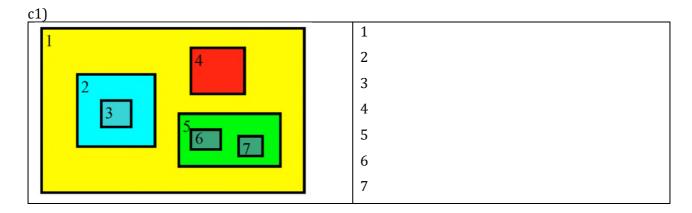
Parametrizzazione della radiazione lunga: Rapid Radiative Transfer Model (RRTM)

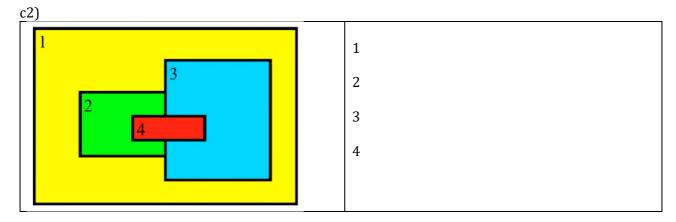
Parametrizzazione della radiazione corta: Schema Dudhia

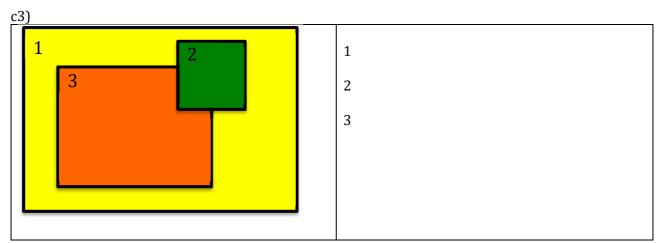
Parametrizzazione della convezione: Schema Kain-Fritsch (new ETA)

&time_control		&domains	
1 run_days	=,	eta_levels	
2 run_hours	=,	= 1.000, 0.995, 0.9901, 0.	
3 run_minutes	=,	0.9753, 0.9703, 0.965, 0	
4 run_seconds	=,	0.9476, 0.9412, 0.9344	
5 start_year	=,	0.9113, 0.9024, 0.8929 0.8596, 0.8467, 0.8327	
6 start_month	=,	0.1478, 0.1301, 0.1138	
7 start_day	=,	0.0726, 0.0611, 0.0507	
8 start_hour	=,	0.0247, 0.0176, 0.0112	, 0.0053, 0.000,
9 start_minute	=,	22.41	
10 start_second	=,	•	·
11 end_year	=,		=,
12 end_month	=,		·,
13 end_day	=,		
14 end_hour	=,	20.1	
15 end_minute	=,	00.1	
16 end_second	=,	29 dy =	
17 interval_seconds	=,	0 1 :	
18 history_interval	=,	&physics	
19 io_form_history	=,		=,
20 io_form_restart	=,		=
21 io_form_input	=,	2 7	·,
22 io_form_boundary	=,	1 1	=,
	•	34 cu_physics =	=,

b) Nel file NCL seguente:


```
1 load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
2 load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
3 begin
4 a = addfile("/Volumes/2TDISK/wrfout/wrfout_1km_2016-11-24_06.nc","r")
5 wks = gsn_open_wks("x11","/Users/franco/Desktop/mappeNCL/absolutevorticity")
8 \text{ res} = \text{True}
9 res@MainTitle
                          = "REAL-TIME WRF"
10 \text{ pltres} = \text{True}
11 mpres = True
12 mpres@mpDataBaseVersion = "LowRes"
13 mpres@mpGeophysicalLineColor = "Black"
14 mpres@mpGeophysicalLineThicknessF = 2.0
17 times = wrf_user_getvar(a,"times",-1); get times in the file
18 ntimes = dimsizes(times)
                           ; number of times in the file
20
21 \text{ do it} = 0,\text{ntimes-}1,2
22 print("Working on time: " + times(it))
23 res@TimeLabel = times(it) ; Set Valid time to use on plots
25
26 pvo = wrf_user_getvar(a,"pvo",it)
27 avo = wrf_user_getvar(a,"avo",it)
28\ p \quad = wrf\_user\_getvar(a,"pressure",it)
30; Interpolate to pressure
31\ pv\_plane = wrf\_user\_intrp3d(pvo,p,"h",300.,0,False)
32 av_plane = wrf_user_intrp3d(avo,p,"h",500.,0,False)
34; Plotting options
35 \text{ opts} = \text{res}
36 opts@cnFillOn = True
37 opts@gsnSpreadColorEnd = -3; End third from the last color in color map
38 opts@ContourParameters = (/0., 100., 10./)
39 contour_a = wrf_contour(a,wks,avo,opts)
40 contour = wrf_contour(a,wks,pvo,opts)
41 delete(opts)
42
43; MAKE PLOTS
44 plot = wrf_map_overlays(a,wks,(/contour_a/),pltres,mpres)
45 plot = wrf_map_overlays(a,wks,(/contour/),pltres,mpres)
46
47 end do
48
50
51 end
```


b1) cosa bis	sogna modificare e	in quale riga, per avere l	output ir	n formato pdf?
Risp	oosta, al rigo	sostituire		con
b2) cosa bi	sogna modificare e	e in quale riga, per avere	l'output d	lelle mappe ad alta risoluzione?
Risp	oosta, al rigo	sostituire		con
b3) cosa bis	sogna modificare e	in quale riga, per avere l	output d	elle mappe ad intervalli di 6 ore?
Risposta, al	rigo sostitu	ire	_ con	


1_ 4 7	1	J:C:			aumentare lo		. 11 - 1:	1:
n4 I	Langa nignona	-modificare e	air diiale	rioa ner	' alimentare id	i snessare ae	Me linee	ai casta (
\mathbf{v}	COSG DISOSIIG	. IIIO allical C C	, iii quaic	IISU, DCI	aumitum c m	, apcaadi c ac		ai costa.

Risposta, al rigo _____ sostituire _____ con ____

c) Le tre figure seguenti mostrano alcune possibilità di "nesting". Indicare, per ogni figura i domini realizzabili e quelli che non si possono realizzare, scrivendo accanto al numero "SI" se è realizzabile e "NO" se non è realizzabile.

- c4) indicare quale è il rapporto tra la risoluzione del dominio padre e del dominio figlio che viene maggiormente utilizzato.
- c5) indicare la distanza minima, espressa in numero di celle, tra il bordo del dominio padre e il bordo del domino figlio.

Esercizio 2

a) Compilare le parti mancanti del file namelist.input seguendo le indicazioni riportate di seguito:

Data e ora di inizio del RUN: **20 settembre 2019 ore 00** Data o ora di fine del RUN: **24 settembre 2019 ore 00**

Dati di input: GRIB GFS a 1hr

Estensione del dominio in celle: **110 x 110** Risoluzione spaziale del dominio: **5 km** Risoluzione temporale del dominio: **1 ora**

Formato dei file di output: NetCDF

Parametrizzazione del Planetary Boundary Layer: Schema YSU

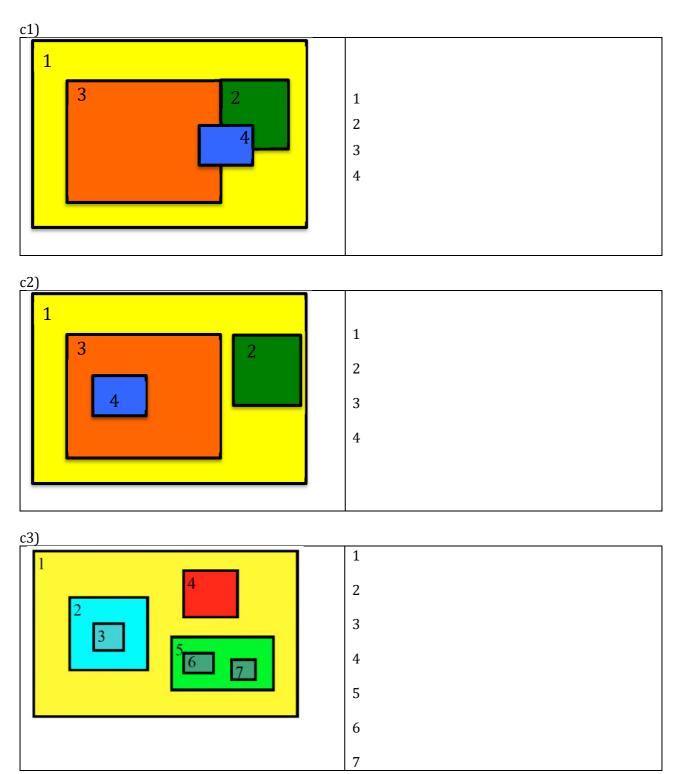
Parametrizzazione della microfisica: Schema Ferrier

Parametrizzazione della radiazione lunga: Rapid Radiative Transfer Model (RRTM)

Parametrizzazione della radiazione corta: Schema Dudhia

Parametrizzazione della convezione: Schema Kain-Fritsch (new ETA)

&time_control		&domains
1 run_days	=,	eta_levels
2 run_hours	=,	= 1.000, 0.995, 0.9901, 0.9851, 0.9802,
3 run_minutes	=,	0.9753, 0.9703, 0.965, 0.9595, 0.9537,
4 run_seconds	=,	0.9476, 0.9412, 0.9344, 0.9272, 0.9195,
5 start_year	=,	0.1478, 0.1301, 0.1138, 0.0988, 0.0851,
6 start_month		0.0726, 0.0611, 0.0507, 0.0412, 0.0326, 0.0247, 0.0176, 0.0112, 0.0053, 0.000,
7 start_day		0.0247, 0.0170, 0.0112, 0.0033, 0.000,
8 start_hour	=, -	23 time_step =,
_	=	24 e_we =,
9 start_minute	=,	25 e_sn =,
10 start_second	=,	26 e_vert =,
11 end_year	=,	· ·
12 end_month	=	27 num_metgrid_levels =,
13 end_day	=,	28 dx =,
14 end_hour	=,	29 dy =,
15 end_minute	=,	
16 end_second	=,	&physics
17 interval_seconds	=,	30 mp_physics =,
18 history_interval	=,	31 ra_lw_physics =,
19 io_form_history	=,	32 ra_sw_physics =,
20 io_form_restart	=,	33 bl_pbl_physics =,
21 io_form_input	=,	34 cu_physics =,
22 io_form_boundary	= ,	
	<i>)</i>	
		<u>I</u>


b) Nel file NCL seguente:

```
1 load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
2 load "$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
3 begin
4 a = addfile("/Volumes/2TDISK/wrfout/wrfout_1km_2016-11-24_06.nc","r")
5 wks = gsn_open_wks("x11","/Users/franco/Desktop/mappeNCL/absolutevorticity")
6
7
8 res = True
9 res@MainTitle = "REAL-TIME WRF"
10 pltres = True
```

11 mpres = True
12
13 mpres@mpGeophysicalLineColor = "Black"
14 mpres@mpGeophysicalLineThicknessF = 2.0
15 mpres@mpDataBaseVersion = "LowRes"
16 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
17 times = wrf_user_getvar(a,"times",-1); get times in the file
18 ntimes = dimsizes(times) ; number of times in the file
19 ;;;;;;;;;;;;
20
21 do it = 0, ntimes-1, 2
22 print("Working on time: " + times(it))
23 res@TimeLabel = times(it) ; Set Valid time to use on plots
24
25
26 pvo = wrf_user_getvar(a,"pvo",it)
27 avo = wrf_user_getvar(a,"avo",it)
28 p = wrf_user_getvar(a,"pressure",it)
29 20 Year 1 (20)
30; Interpolate to pressure
31 pv_plane = wrf_user_intrp3d(pvo,p,"h",300.,0,False)
32 av_plane = wrf_user_intrp3d(avo,p,"h",500.,0,False)
33
34; Plotting options
35 opts = res
36 opts@cnFillOn = True
37 opts@gsnSpreadColorEnd = -3; End third from the last color in color map
38 opts@ContourParameters = (/ 0., 100., 10./)
39 contour_a = wrf_contour(a,wks,avo,opts) 40 contour = wrf_contour(a,wks,pvo,opts)
40 contour = wri_contour(a,wks,pvo,opts) 41 delete(opts)
41 delete(opts) 42
43 : MAKE PLOTS
44 plot = wrf_map_overlays(a,wks,(/contour_a/),pltres,mpres)
44 plot = wrf_map_overlays(a,wks,(/contour/),pltres,mpres) 45 plot = wrf_map_overlays(a,wks,(/contour/),pltres,mpres)
46
47 end do
48
40
50
51 end
b1) cosa bisogna modificare e in quale riga, per avere l'output in formato png?

Risposta, al rigo	sostituire	con
b2) cosa bisogna modificare	e e in quale riga, per avere l'outpu	t delle mappe ad alta risoluzione?
Risposta, al rigo	sostituire	con
b3) cosa bisogna modificare	e in quale riga, per avere l'output	t delle mappe ad intervalli di 3 ore?
Risposta, al rigo	sostituire	con
b4) cosa bisogna modificare	e in quale riga, per aumentare lo	spessore delle linee di costa?
Risposta, al rigo	sostituire	con

c) Le tre figure seguenti mostrano alcune possibilità di "nesting". Indicare, per ogni figura i domini realizzabili e quelli che non si possono realizzare, scrivendo accanto al numero "SI" se è realizzabile e "NO" se non è realizzabile.

- c4) indicare quale è il rapporto tra la risoluzione del dominio padre e del dominio figlio che viene maggiormente utilizzato.
- c5) indicare la distanza minima, espressa in numero di celle, tra il bordo del dominio padre e il bordo del domino figlio.

Esercizio 3

a) Compilare le parti mancanti del file namelist.input seguendo le indicazioni riportate di seguito:

Data e ora di inizio del RUN: **19 maggio 2019 ore 00** Data o ora di fine del RUN: **19 maggio 2019 ore 12**

Dati di input: GRIB GFS a 1hr

Estensione del dominio in celle: **70 x 70** Risoluzione spaziale del dominio: **20 km** Risoluzione temporale del dominio: **1 ora**

Formato dei file di output: NetCDF

Parametrizzazione del Planetary Boundary Layer: Schema YSU

Parametrizzazione della microfisica: Schema Ferrier

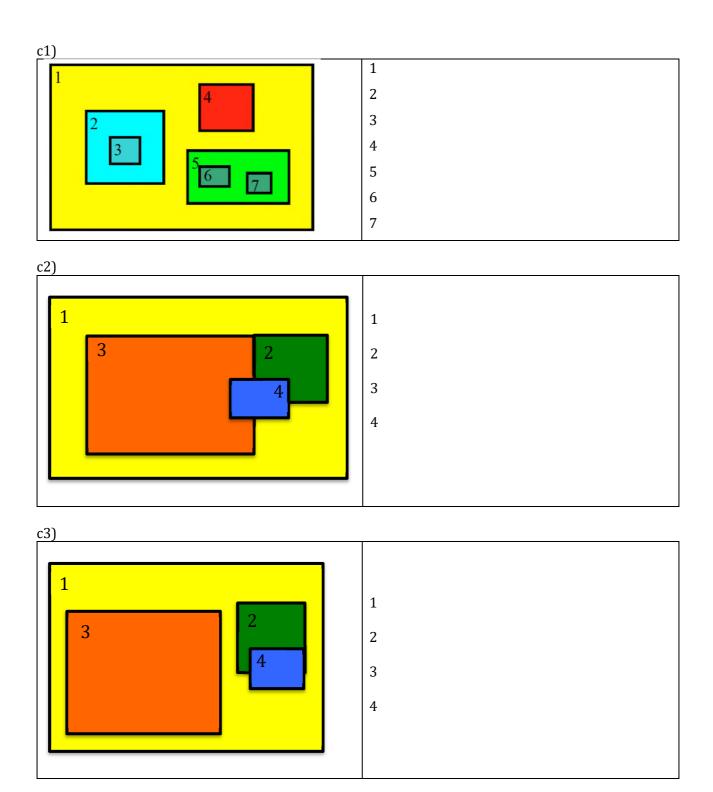
Parametrizzazione della radiazione lunga: Rapid Radiative Transfer Model (RRTM)

Parametrizzazione della radiazione corta: Schema Dudhia

Parametrizzazione della convezione: Schema Kain-Fritsch (new ETA)

&time_control		&domains	
1 run_days	=,	eta_levels	
2 run_hours	=,	= 1.000, 0.995, 0.9901	, 0.9851, 0.9802,
3 run_minutes	=,	0.9753, 0.9703, 0.96	
4 run_seconds	=,	0.9476, 0.9412, 0.93	
5 start_year	=,	0.9113, 0.9024, 0.89	
6 start_month	, =,	0.8596, 0.8467, 0.83 0.1478, 0.1301, 0.11	
7 start_day	=,	0.0726, 0.0611, 0.05	
8 start_hour		0.0247, 0.0176, 0.01	
9 start_minute	=, -		
	=, -	23 time_step	=,
10 start_second	=,	24 e_we	=,
11 end_year	=,	25 e_sn	=,
12 end_month	=,	26 e_vert	=,
13 end_day	=,	27 num_metgrid_levels	=,
14 end_hour	=,	28 dx	=,
15 end_minute	=,	29 dy	=,
16 end_second	=,		
17 interval_seconds	=,	&physics	
18 history_interval	=,	30 mp_physics	=,
19 io_form_history	=,	31 ra_lw_physics	=, =,
20 io_form_restart	=,	32 ra_sw_physics	
21 io_form_input	=,	33 bl_pbl_physics	=,
22 io_form_boundary	=,	2 2 2	=,
		34 cu_physics	=

b) Nel file NCL seguente:


¹ load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

² load "\$NCARG_ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

³ begin

4 a = addfile("/Volumes/2TDISK/wrfout. 5	/wrfout_1km_2016-11-24_	_06.nc","r")	
6	75 1 / 2767		
7 wks = gsn_open_wks("x11","/Users/fr 8 res = True	anco/Desktop/mappeNCL/	absolutevorticity")	
9 res@MainTitle = "REAL-T	ΓIME WRF"		
10 pltres = True 11 mpres = True			
12			
13 mpres@mpDataBaseVersion = "Lowl 14 mpres@mpGeophysicalLineColor	Res" = "Black"		
15 mpres@mpGeophysicalLineThicknes	ssF = 2.0		
16 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
18 ntimes = dimsizes(times) ; numb	er of times in the file		
19 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	,		
20 21 do it = 0,ntimes-1,2			
22 print("Working on time: " + times(it)			
23 res@TimeLabel = times(it) ; Set Val 24	ad time to use on plots		
25			
26 pvo = wrf_user_getvar(a,"pvo",it) 27 avo = wrf_user_getvar(a,"avo",it)			
28 p = wrf_user_getvar(a,"pressure",it	:)		
29 30 ; Interpolate to pressure			
31 pv_plane = wrf_user_intrp3d(pvo,p,"l	h",300.,0,False)		
32 av_plane = wrf_user_intrp3d(avo,p,"h	1",500.,0,False)		
33 34; Plotting options			
35 opts = res			
36 opts@cnFillOn = True 37 opts@gsnSpreadColorEnd = -3; End	I third from the last color in	color map	
38 opts@ContourParameters = (/ 0., 100.	., 10./)		
39 contour_a = wrf_contour(a,wks,avo,o 40 contour = wrf_contour(a,wks,pvo,opts			
41 delete(opts)	3)		
42 . MAKE DLOTS			
43; MAKE PLOTS 44 plot = wrf_map_overlays(a,wks,(/con	tour a/),pltres,mpres)		
45 plot = wrf_map_overlays(a,wks,(/con	tour/),pltres,mpres)		
46 47 end do			
48			
49 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	,		
51 end			
b1) cosa bisogna modificare e	e in quale riga, per	avere l'output in formato	jpg?
Risposta, al rigo	_ sostituire	con	
b2) cosa bisogna modificare	e in quale riga, per	avere l'output delle map	pe ad alta risoluzione?
Risposta, al rigo	_ sostituire	con	
b3) cosa bisogna modificare e	e in quale riga, per	avere l'output delle mapp	oe ad intervalli di 4 ore?
Risposta, al rigo	_sostituire	con	
b4) cosa bisogna modificare e	e in quale riga, per	aumentare lo spessore de	elle linee di costa?
Risposta, al rigo	sostituire	con	

c) Le tre figure seguenti mostrano alcune possibilità di "nesting". Indicare, per ogni figura i domini realizzabili e quelli che non si possono realizzare, scrivendo accanto al numero "SI" se è realizzabile e "NO" se non è realizzabile.

- c4) indicare quale è il rapporto tra la risoluzione del dominio padre e del dominio figlio che viene maggiormente utilizzato.
- c5) indicare la distanza minima, espressa in numero di celle, tra il bordo del dominio padre e il bordo del domino figlio.