ACCORDO-QUADRO
TRA IL DIPARTIMENTO DELLA PROTEZIONE CIVILE E
L'ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA
PER L'ATTIVITÀ DI SORVEGLIANZA SISMICA E VULCANICA
SUL TERRITORIO NAZIONALE, DI CONSULENZA TECNICO - SCIENTIFICA E
DI STUDI SUI RISCHI SISMICO E VULCANICO

(Decennio 2012 - 2021)

ALLEGATO A:
Attività di Servizio
1. PREMESSA

1.1. Generalità

Il presente allegato è parte integrante dell’Accordo-Quadro (rep. n. 1153 del 02/02/2012) tra Dipartimento della Protezione Civile e Istituto Nazionale di Geofisica e Vulcanologia (d’ora in avanti DPC e INGV, rispettivamente) per il decennio 2012-21 (art. 3).

L’allegato regola le attività in coerenza con le prioritarie funzioni di previsione e prevenzione dei rischi di competenza del Servizio Nazionale di Protezione Civile, come definite dalla legge 225 del 1992, con il ruolo dell’INGV come componente e struttura operativa dello stesso Servizio.

Il presente allegato definisce, indirizza e stabilisce:

- la destinazione, le modalità, gli strumenti e le procedure per la condivisione delle informazioni derivanti dalle attività di monitoraggio e dalle analisi sismiche e vulcaniche prodotte dall’INGV, nonché gli strumenti di efficace comunicazione e concertazione, anche in tempo reale, tra il DPC e l’INGV per eventi sismici e vulcanici significativi che interessino il territorio nazionale e, in casi specifici, avvengano al di fuori di esso;
- le modalità e gli strumenti per rafforzare la capacità valutativa e decisionale del DPC.

Inoltre, l’allegato definisce la disponibilità reciproca in merito a:

- tutti quei dati, prodotti e strumenti, anche di natura generale e di base, acquisiti nell’ambito dell’Accordo-Quadro per il Servizio Nazionale di Protezione Civile;
- prodotti, strumenti e informazioni acquisiti e/o sviluppati dall’INGV e dal DPC al di fuori dell’Accordo-Quadro per il Servizio Nazionale di Protezione Civile, qualora sia stata acquisita l’autorizzazione da parte dei soggetti che ne partecipano la proprietà intellettuale e/o materiale.

L’allegato A, infine, descrive in dettaglio le seguenti attività:

1) Sorveglianza sismica:
 - sistema di condivisione delle informazioni in tempo reale;
 - bollettini, comunicati e relazioni (inclusa la Matrice Decisionale delle comunicazioni degli eventi sismici dall’INGV);
 - gestione e manutenzione delle reti di monitoraggio;
 - gestione del personale specialistico e dei relativi mezzi di supporto.

2) Sorveglianza vulcanica:
 - sistema di condivisione delle informazioni in tempo reale;
 - bollettini, comunicati e relazioni;
 - gestione e manutenzione delle reti di monitoraggio;
 - gestione del personale specialistico e dei relativi mezzi di supporto.

3) Gestione delle banche-dati sismologiche e vulcanologiche:
 - banche dati strumentali;
 - banche dati storiche;
 - banche dati geologiche;
 - manutenzione, fruibilità, integrazione, interoperabilità e disseminazione secondo le normative vigenti.

4) Preparazione e gestione delle attività tecnico-scientifiche in emergenza:
 - procedure tecnico-scientifiche in caso di emergenza sismica e/o vulcanica;
 - reti di pronto intervento;
 - organizzazione e coordinamento delle attività dei propri gruppi di intervento;
 - definizione di dati ed elaborazioni da fornire al Dipartimento;
 - modalità e formati di trasferimento a fini decisionali;
 - definizione e implementazione delle attività durante le emergenze, incluse le modalità di concorso alle attività di gestione dell’emergenza presso le strutture di coordinamento del
DPC nella sede del Dipartimento e sul luogo dell'evento.

5) Formazione, comunicazione e divulgazione sui temi della pericolosità e rischio sismico, vulcanico e da maremoti associati.

1.2. L'architettura del servizio di sorveglianza del territorio nazionale

La funzione tecnico-scientifica di supporto alle autorità decisionali, che viene attivata nell'ambito di un quadro emergenziale potenziale o in atto, è assunta dai settori del Centro Funzionale Centrale (CFC) dedicati ai rischi sismico (CFC-RS) e vulcanico (CFC-RV), qualora questi siano completamente in funzione. Nelle ore della piena attivazione dei competenti settori del CFC, le attività ad essi attribuite debbono intendersi svolte direttamente dall’Ufficio Rischio Sismico e Vulcanico.

In particolare, l’INGV svolge nel tempo reale le funzioni relative:

- alla raccolta, composizione, elaborazione, visualizzazione e analisi dei dati rilevati dalle reti per le diverse finalità dalle diverse tipologie di sensori;
- alla caratterizzazione dell’evento in atto;
- alla predisposizione di tutte le informazioni relative al manifestarsi dell’evento atteso e/o in atto, nonché alla trasmissione delle informazioni al CFC secondo adeguate procedure definite nel prospetto del presente allegato. Inoltre, nel caso di manifestazioni vulcaniche, fornisce valutazioni, anche sintetiche e speditive;
- alla comunicazione tempestiva alla Sala Situazione Italia (d’ora in avanti SSI) e al CFC, secondo adeguate procedure descritte nel seguito o, in casi specifici, concordate in base alle esigenze del DPC.

Inoltre, per quanto di pertinenza dell’Accordo-Quadro, per la valutazione della criticità da parte del DPC, l’INGV assicura:

- un sistema di condivisione delle informazioni in tempo reale;
- un sistema di bollettini, comunicati e relazioni.

Il CFC, sulla base delle informazioni pervenute dall’INGV, nonché tramite altre notizie reperite localmente in tempo reale, anche attraverso i presidi territoriali:

- procede alla verifica degli scenari di rischio già prefigurati o, quando necessario, ad una loro nuova formulazione;
- supporta le decisioni delle Autorità competenti di protezione civile e assolve alle necessità operative del sistema di protezione civile.
2. LA SORVEGLIANZA SISMICA

2.1. Sistema di condivisione delle informazioni in tempo reale

La comunicazione dell’INGV viene condotta secondo tre principi guida:
- fornire al DPC informazioni precise riguardo al fenomeno sismico in atto, secondo quanto specificato nell’Accordo-Quadro, per permettere al Dipartimento di gestire la criticità in atto e/o un’eventuale emergenza;
- fornire informazioni in tempo rapido anche alle autorità locali competenti (quali uffici regionali di protezione civile, prefetture, uffici comunali), in aggiunta e coerentemente a quanto fatto dal DPC;
- ridurre, compatibilmente con le esigenze di protezione civile, i tempi nel rilascio di informazioni di interesse generale ai media e al pubblico, per evitare che una richiesta urgente da parte di questi ultimi venga rivolta a soggetti non di competenza.

Seguendo questi principi, l’INGV fornisce quattro livelli di informazione in modo sequenziale:
1. dati ipocentrali e magnitudo calcolate in modo automatico, senza verifica da parte del sismologo;
2. dati ipocentrali e magnitudo verificate dal sismologo;
3. informazioni accessorie, quali dati storici, contesto sismotettonico, mappe di scuotimento, riferimenti alla pericolosità;
4. elaborazioni e analisi delle informazioni raccolte, formulate dal funzionario di servizio o dal direttore del Centro Nazionale Terremoti.

Il DPC è a conoscenza che la qualità e la precisione dell’informazione migliorano con il passare del tempo dall’evento, e che le informazioni fornite rapidamente o ad evento in corso sono soggette a maggiori incertezze.

Allo scopo di assicurare la ridondanza e la robustezza del sistema di trasferimento delle informazioni (comunicati, bollettini, relazioni) al DPC, l’INGV si avvale di una combinazione di mezzi tecnici:
1. Pagina internet dedicata, riservata al DPC (GeoServer). Presso la SSI e il CFC del DPC è installata una postazione internet in connessione diretta con la sala sismica dell’INGV. Essa, attraverso una pagina web ad accesso riservato per il DPC, consente il continuo aggiornamento e la consultazione dei dati relativi agli ultimi terremoti verificatisi. Tutte le informazioni (comunicati, bollettini, relazioni) trasferite dall’INGV verranno caricate sul sito dedicato non appena disponibili. L’INGV è tenuto a segnalare ogni malfunzionamento della pagina web dedicata e, in tal caso, a fornire automaticamente lo stesso servizio su un sito internet di ridondanza. Il servizio deve essere garantito 24 h;
2. Connessione telefonica su linea diretta punto-punto DPC-INGV; la responsabilità per la manutenzione della linea è del DPC;
3. Invio di SMS automatici ai numeri specificati in Appendice;
5. Caricamento di comunicati, bollettini, relazioni ed eventuali altri file sul sito ad accesso riservato del Sistema d’Allertamento Nazionale, predisposto dal DPC.

2.2. Bollettini, comunicati e relazioni

Le comunicazioni tra l’INGV e il DPC prevedono l’invio di Bollettini, Comunicati e Relazioni. Tali documenti sono redatti secondo formati concordati e trasmessi al DPC come di seguito precisato.

I Bollettini riportano una descrizione, anche mediante apposite mappe e grafici, dell’attività sismica sul territorio nazionale nella settimana precedente alla data di emissione e dello stato delle reti di monitoraggio; sono emessi con cadenza settimanale.

I Comunicati riguardano il verificarsi di eventi sismici significativi e/o di eventuali fenomeni associati. Essi seguono le modalità e la tempistica riportate nella successiva “Matrice Decisionale delle Comunicazioni” (Tab. 1) e trasmettono tre parametri di riferimento:
1. **localizzazione** dell’evento attraverso le coordinate geografiche dell’epicentro, in termini di:
 - terraferma, o entro 50 km dalla costa, o dai confini nazionali, o comunque con effetti rilevanti sul territorio nazionale, in area non vulcanica;
 - area vulcanica, con epicentro sia su terraferma sia in mare;
 - mare con distanza dalla costa maggiore di 50 km.
2. **magnitudo**;
3. **profondità** dell’ipocentro in chilometri.

Questi parametri sono corredati dalle relative incertezze, espressesi rispettivamente in chilometri per localizzazione e profondità e in valori di magnitudo, e riferite a 1 deviazione standard.

Dopo una prima telefonata dell’INGV alla SSI per la notifica generica dell’evento (entro 2 minuti), un primo Comunicato viene inviato in modo automatico entro 5 minuti dall’evento stesso. Appena disponibile, e comunque entro 30 minuti dal tempo origine dell’evento, l’INGV fornisce un secondo comunicato con le informazioni definitive, relative a localizzazione, profondità e magnitudo con le relative incertezze, secondo le modalità riportate in Tabella 1.

Le Relazioni sono volte a descrivere in maniera più completa ed esaustiva il quadro sismotettonico complessivo per terremoti, anche avvenuti al di fuori del territorio nazionale, o sequenze sismiche, occorse o in atto, di cui l’INGV ha già informato il DPC per mezzo dei comunicati. Esse sono basate sulle informazioni provenienti da tutte le banche dati dell’Istituto e su quelle raccolte dalle reti di monitoraggio, eventualmente integrate da quanto osservato in sopralluoghi effettuati ad hoc. In esse vengono incorporate anche le informazioni fornite dal DPC e da altri centri di competenza del Dipartimento. L’INGV ha cura di coordinare le informazioni, quando disponibili, provenienti dalle proprie reti di monitoraggio, in modo che tali relazioni includano una descrizione complessiva dei fenomeni. Le relazioni sono redatte in caso di scosse rilevanti per il territorio nazionale e in ogni caso per MI ≥ 4.0. In caso di aftershock, tale procedura è da concordare in base all’evoluzione del fenomeno in atto (punto 5.3.) e potrà eventualmente avere cadenza periodica.

Una prima relazione viene inviata entro 1 ora, mentre nelle ore successive viene elaborata dal funzionario di servizio o dal direttore del CNT una seconda relazione, di dettaglio, contenente anche elaborazioni e analisi sul fenomeno in atto.

Le relazioni devono essere prodotte anche a seguito di richiesta del DPC, o possono essere inviate dall’INGV ogni qual volta lo ritenga opportuno, esplicitandone le ragioni. Per quanto riguarda terremoti avvenuti al di fuori del territorio nazionale, le relazioni saranno prodotte a seguito di richiesta da parte del DPC.
2.3. Matrice Decisionale delle comunicazioni degli eventi sismici dall'INGV

Tab. 1 - Eventi in Italia in terra o in mare

(Per eventi in mare oltre 50 km dalla costa le prime due colonne non vengono adottate ad eccezione, quando possibile, dell'invio Rev su GeoServer)

<table>
<thead>
<tr>
<th></th>
<th>MI ≤ 2.4</th>
<th>2.5 ≤ MI ≤ 2.9</th>
<th>3.0 ≤ MI < 4.0</th>
<th>MI ≥ 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 min</td>
<td>-</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
</tr>
<tr>
<td>5 min</td>
<td>-</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
</tr>
<tr>
<td></td>
<td>Invio Aut su GeoServer se Q ≠ DD</td>
<td>Invio Aut su GeoServer se Q ≠ DD</td>
<td>e-mail a SSI-CFC (1° comunicato automatico)</td>
<td>e-mail a SSI-CFC (1° comunicato automatico)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMS Aut a Elenco 1 in Appendice 4</td>
</tr>
<tr>
<td>30 min</td>
<td>-</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
<td>Telefonata SSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e-mail a SSI-CFC (2° comunicato automatico)</td>
<td>e-mail a SSI-CFC (2° comunicato automatico)</td>
<td>Meccanismo focale su GeoServer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMS Rev a SSI</td>
<td>SMS Rev a Elenco 2 in Appendice 4</td>
<td>SMS Rev a Elenco 2 in Appendice 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mappe su web INGV</td>
<td>Mappe su web INGV</td>
<td>Mappe su web INGV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shake Map su web INGV</td>
</tr>
<tr>
<td>1h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n. h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Relazione di dettaglio via e-mail a CFC e su GeoServer</td>
</tr>
</tbody>
</table>

Aut: localizzazione automatica.
Q: codice di qualità della soluzione (DD equivale a una soluzione non accettabile).
Rev: localizzazione rivista definitiva.
GeoServer: web server INGV che ospita il sito riservato al DPC.
Tabella 2 - Eventi nell'area Euro-Mediterranea

<table>
<thead>
<tr>
<th></th>
<th>5.0 ≤ MI < 5.5</th>
<th>MI ≥ 5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min (o appena disponibile)</td>
<td>-</td>
<td>Telefonata SSI</td>
</tr>
<tr>
<td></td>
<td>Invio Aut su GeoServer se Q≥ DD</td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>Invio Rev su GeoServer</td>
<td>Invio Rev su GeoServer</td>
</tr>
<tr>
<td></td>
<td>e-mail a SSI-CFC (comunicato con parametri Rev)</td>
<td>e-mail a SSI-CFC (comunicato con parametri Rev)</td>
</tr>
<tr>
<td></td>
<td>Mappe su web CNT</td>
<td>Mappe su web CNT</td>
</tr>
<tr>
<td></td>
<td>Relazione di dettaglio</td>
<td>Relazione di dettaglio</td>
</tr>
<tr>
<td></td>
<td>(su richiesta DPC, entro 2h)</td>
<td>(su richiesta DPC, entro 2h)</td>
</tr>
</tbody>
</table>

Tabella 3 - Eventi Telesismici

<table>
<thead>
<tr>
<th></th>
<th>6.0 ≤ MI < 6.5</th>
<th>MI ≥ 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min (o appena disponibile)</td>
<td>-</td>
<td>Telefonata SSI per evento importante</td>
</tr>
<tr>
<td></td>
<td>(se dati già disponibili)</td>
<td>(se dati già disponibili)</td>
</tr>
<tr>
<td>30 min</td>
<td>Invio Rev (eventualmente prodotto da INGV, USGS, Geofon, CSEM, o altro) su GeoServer</td>
<td>Invio Rev (eventualmente prodotto da INGV, USGS, Geofon, CSEM, o altro) su GeoServer</td>
</tr>
<tr>
<td></td>
<td>e-mail a SSI-CFC (comunicato con parametri Rev)</td>
<td>e-mail a SSI-CFC (comunicato con parametri Rev)</td>
</tr>
<tr>
<td></td>
<td>SMS Rev a SSI</td>
<td>SMS Rev a SSI</td>
</tr>
<tr>
<td></td>
<td>Relazione di dettaglio</td>
<td>Relazione di dettaglio</td>
</tr>
<tr>
<td></td>
<td>in caso di evento superficiale</td>
<td>in caso di evento superficiale</td>
</tr>
<tr>
<td></td>
<td>(su richiesta DPC, entro 2h)</td>
<td>(su richiesta DPC, entro 2h)</td>
</tr>
</tbody>
</table>

Qualora l'INGV riceva notizia di uno qualsiasi degli eventi riportati nella Tabella 1 come avvertito da parte della popolazione, è tenuto in ogni caso a comunicarlo con telefonata alla SSI e via e-mail alla SSI e al CFC, indipendentemente dal valore di magnitudo. Analogamente, il DPC contatta l'INGV in merito ad eventuali notizie di eventi sismici ricevute dal territorio per averne un riscontro strumentale.
3. LA SORVEGLIANZA VULCANICA

Il sistema di condivisione delle informazioni e delle comunicazioni tra il DPC (CFC) e l'INGV è articolato per complessi vulcanici. Esso deve essere mantenuto permanentemente attivo.

L'INGV, tramite l'attività di sorveglianza, caratterizza l'evento in atto oppure, quando possibile, elabora un'eventuale previsione anche a brevissimo termine del manifestarsi di un evento, delle sue caratteristiche e della sua evoluzione.

L'INGV individua per ciascun complesso vulcanico una propria Sezione di riferimento che svolga rispetto al DPC la funzione di collettore delle informazioni prodotte dalle diverse Sezioni INGV coinvolte e curi l'invio del comunicato al DPC, secondo la Tabella 4.

3.1. Sistema di condivisione delle informazioni

La comunicazione dell'INGV viene condotta secondo tre principi guida:
- fornire al DPC (CFC) informazioni tempestive, affidabili e precise riguardo ai fenomeni vulcanici in atto, secondo quanto specificato nell'Accordo-Quadro, per permettere al Dipartimento di gestire la criticità in atto e un'eventuale emergenza;
- fornire informazioni in tempo rapido anche alle autorità locali competenti (quali uffici regionali di protezione civile, prefetture, uffici comunali), in aggiunta a quanto fatto dal DPC;
- ridurre, compatibilmente con le esigenze di protezione civile, i tempi nel rilascio di informazioni di interesse generale ai media e al pubblico, per evitare che una loro richiesta urgente venga rivolta a soggetti non di competenza.

L'INGV fornisce informazioni al DPC (CFC) in maniera da evidenziare possibili manifestazioni anomale dei sistemi vulcanici, così permettendo al DPC di valutare le criticità prevedibili o in atto e di prefigurare possibili scenari d'evento, inclusi quelli legati alla dispersione di ceneri vulcaniche.

Il DPC è a conoscenza che la qualità e precisione dell'informazione migliora con il passare del tempo dall'evento, e che le informazioni fornite rapidamente, prima o durante le prime fasi degli eventi vulcanici sono soggette a maggiori incertezze.

Allo scopo di assicurare la ridondanza e la robustezza del sistema di informazione, l'INGV trasferisce le informazioni (comunicati, bollettini, relazioni) al DPC, ovvero alla SSI e al CFC secondo quanto definito nella Tab. 4, con una combinazione di mezzi tecnici:

1. Pagina internet dedicata riservata, dove tutte le informazioni, cartografiche e non, devono:
 a. essere organizzate per complesso vulcanico, con modalità da concordare;
 b. essere aggiornate, ove possibile in tempo reale o con cadenze temporali adeguate;
 c. tenere conto dei formati utilizzati dal DPC (vedi Appendice A3).

L'INGV è tenuto a segnalare ogni malfunzionamento della pagina web dedicata e, in tal caso, a fornire automaticamente lo stesso servizio su un sito internet di ridondanza. Il servizio deve essere garantito h24;
2. Connessione telefonica su linea diretta punto-punto DPC-INGV; la responsabilità per la manutenzione della linea è del DPC;
3. Inviò di e-mail agli indirizzi specificati in Appendice;
4. Eventuale invio di SMS ai numeri specificati in Appendice;
5. Caricamento di comunicati, bollettini, relazioni ed eventuali altri file sul sito ad accesso riservato del Sistema d'Allertamento Nazionale, predisposto dal DPC.

3.2. Bollettini, comunicati e relazioni

Le comunicazioni tra l'INGV e il DPC prevedono l'invio di Bollettini, Comunicati e Relazioni, che sono redatti secondo formati concordati e trasmessi al DPC secondo quanto esposto nel punto precedente.

Bollettini, Comunicati e Relazioni non possono essere resi pubblici prima della loro trasmissione al DPC.

I Bollettini sono trasmessi via e-mail al CFC-RV. Essi:
- contengono esplicite valutazioni vulcanologiche e di pericolosità relative ai fenomeni osservati e allo stato di attività vulcanica per la definizione della criticità da parte del DPC (per la frequenza si veda la tabella sottostante);
- oltre alle valutazioni per ciascuna singola disciplina di monitoraggio, riportano una sintesi complessiva dello stato di attività del vulcano e, ove possibile, indicazioni circa la sua eventuale evoluzione a breve-medio termine;
- sono periodici, emessi ordinariamente con una frequenza concordata con il DPC. Possono avere cadenza giornaliera (in caso di attività eruttiva, di fenomeni significativi o di specifiche esigenze di protezione civile), settimanale o mensile;
- riportano sempre informazioni complete sulla composizione e lo stato delle reti di monitoraggio, evidenziando opportunamente eventuali malfunzionamenti, anche parziali, nonché azioni e tempi previsti per il ripristino.

<table>
<thead>
<tr>
<th>Complesso Vulcanico</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromboli</td>
<td>Giornaliera e settimanale</td>
</tr>
<tr>
<td>Etna</td>
<td>Settimanale</td>
</tr>
<tr>
<td>Campi Flegrei</td>
<td>Mensile</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>Mensile</td>
</tr>
<tr>
<td>Ischia</td>
<td>Mensile</td>
</tr>
<tr>
<td>Vulcano</td>
<td>Mensile</td>
</tr>
</tbody>
</table>

I Comunicati sono relativi al verificarsi di eventi sismici (in area vulcanica) e/o di eventi vulcanici significativi e/o di anomalie significative dei parametri monitorati e/o in ogni caso quando si ritenga necessario informare con immediatezza il DPC. Essi sono emessi dall’INGV tempestivamente via e-mail alla SSI e al CFC-RV.

Dopo una prima telefonata dell’INGV alla SSI per la notifica del fenomeno, un primo Comunicato viene inviato via e-mail entro 5 minuti dal fenomeno stesso. Appena disponibile, e comunque entro 30 minuti, l’INGV fornisce un secondo comunicato con maggiore precisione sull’attività vulcanica in atto. Inoltre, al persistere dell’attività, l’INGV fornisce successivi (almeno uno ogni 24 ore, anche in assenza di variazioni) indicazioni sui fenomeni osservati, fino all’emissione di un comunicato finale che notifichi il termine dell’attività.

L’INGV comunica l’occorrenza di eventi o di anomalie significative secondo il seguente schema:

Tab. 4 - Aree vulcaniche – Tipi di eventi da segnalare attraverso un COMUNICATO

<table>
<thead>
<tr>
<th>Tempi di comunicazione</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evento sismico in area vulcanica con M ≥ Soglia (tab.5)</td>
<td></td>
</tr>
<tr>
<td>Sciami sismico</td>
<td></td>
</tr>
<tr>
<td>Evento sismico avvertito di cui l’INGV ha notizia</td>
<td></td>
</tr>
<tr>
<td>Evento potenzialmente significativo (*)</td>
<td></td>
</tr>
<tr>
<td>Attività effusiva</td>
<td></td>
</tr>
<tr>
<td>Attività esplosiva</td>
<td></td>
</tr>
<tr>
<td>Emissione di ceneri in atmosfera (*)</td>
<td></td>
</tr>
<tr>
<td>Esplosione maggiore o parossistica</td>
<td></td>
</tr>
<tr>
<td>Repentina variazione del tremore vulcanico o di altri parametri monitorati</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>Telefonata a SSI 1° comunicato di notifica dell’evento via e-mail a SSI e CFC</td>
</tr>
<tr>
<td>30 min</td>
<td>2° comunicato e-mail a SSI e CFC</td>
</tr>
<tr>
<td>Variazioni significative</td>
<td>Successivi comunicati via e-mail a SSI e CFC</td>
</tr>
<tr>
<td>Fine attività</td>
<td>Comunicato di cessata attività via e-mail a SSI e CFC</td>
</tr>
</tbody>
</table>

(*) eventi ritenuti significativi ai fini di protezione civile rilevati dall’INGV, quali frane, degassamento anomalo dal suolo, boati, ecc.

(*) Per quanto riguarda le conseguenze sul traffico aereo di una eventuale emissione di cenere vulcanica, le comunicazioni seguono quanto stabilito dai regolamenti e circolari dell’ENAC e dell’ICAO e devono essere inviate per conoscenza alla SSI e CFC.
Tab. 5 - Soglie di magnitudo per i complessi vulcanici

<table>
<thead>
<tr>
<th>complesso vulcanico</th>
<th>magnitudo di "Soglia"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campi Flegrei ed Ischia</td>
<td>MI = 1.5</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>MI = 2.0</td>
</tr>
<tr>
<td>Etna, Isole Eolie, Pantelleria, Canale di Sicilia, Colli Albani</td>
<td>MI = 2.4</td>
</tr>
</tbody>
</table>

Le Relazioni descrivono lo stato di ciascuno dei complessi vulcanici sorvegliati, lo sviluppo e manutenzione del sistema di sorveglianza. Inoltre, esse includono, oltre alle valutazioni di dettaglio, anche una valutazione complessiva di sintesi dei fenomeni, dello stato del vulcano e della sua possibile evoluzione.

Le relazioni devono essere trasmesse al CFC-RV via e-mail e devono essere predisposte con cadenza periodica (si veda la Tabella 6), oppure essere emesse:
- ogni qual volta richiesto dal DPC esplicitandone le ragioni;
- ogni qual volta l'INGV lo ritenga opportuno, esplicitandone le ragioni.

Tab. 6 – Frequenza delle relazioni

<table>
<thead>
<tr>
<th>Complesso Vulcanico</th>
<th>Frequenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromboli</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Etna</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Vulcano</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Campi Flegrei</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Colli Albani</td>
<td>Annuale</td>
</tr>
<tr>
<td>Ischia</td>
<td>Semestrale</td>
</tr>
<tr>
<td>Pantelleria</td>
<td>Annuale</td>
</tr>
<tr>
<td>Panarea</td>
<td>Annuale</td>
</tr>
</tbody>
</table>

L'INGV provvederà a pubblicare Comunicati, bollettini, relazioni ed eventuali altri file sul sito ad accesso riservato per la condivisione documentale del Sistema d'Allertamento Nazionale, predisposto dal DPC (vedi Appendice 4 – Contatti).
4. BANCHE DATI

4.1. Banche-dati sismologiche

La manutenzione e fruibilità delle banche dati è interesse primario dell’INGV. Tutte le banche dati di interesse per il DPC sono rese disponibili on-line. Ad eccezione di ISIDE, le banche dati in questione vengono aggiornate progressivamente online dai gruppi che le gestiscono; gli avanamenti vengono pubblicati con tempioces differenti. Le banche dati di interesse prioritario per il DPC sono descritte di seguito.

CPTI - Catalogo parametrico dei terremoti italiani. Si tratta di un semplice file che gli utenti possono anche gestire nei rispettivi sistemi. INGV fornirà a DPC eventuali release intermedie non pubbliche.

DBMI - Database delle osservazioni macroisismiche dei terremoti italiani. Raccoglie e seleziona in modo critico i dati degli studi macroisismici relativi a terremoti con effetti in territorio italiano, ovvero quelli resi disponibili all’interno di INGV (CFTI, CMTE, Bollettino macrosismico, studi vari) e all’esterno (studi di autori vari, studi da database esteri, etc.). Viene anch’esso periodicamente aggiornato, su base pluriennale. Eventuali versioni in progress verranno rilasciate a DPC o mediante apposito software autoinstallante o mediante IP dedicato.

CFTI - Catalogo dei forti terremoti in Italia. Il CFTI è stato pubblicato per la prima volta come un database su CD-ROM nel 1995 e in seguito trasformato in database accessibile tramite interfaccia web-GIS. Per ognuno dei circa 300 terremoti più forti della storia italiana il CFTI offre una collezione di studi originali e commenti storico-critici su temi predefiniti, come i maggiori effetti in rapporto al contesto urbano, sociale e demografico e agli stili costruttivi, la cronologia delle scosse e gli eventuali effetti sull’ambiente (fagliazione, frane, maremoto). Completa il quadro una descrizione degli effetti di ciascun terremoto località per località, con riferimento sia ai centri abitati che all’edilizia monumentale, e la relativa intensità assegnata..

DISS - Database delle sorgenti sismogenetiche individuali. Viene sviluppato su due piattaforme, un back-end basato su desktop-GIS che contiene software e dati di sviluppo, un front-end basato su web-GIS per la distribuzione e consultazione. L’accesso al database è libero. Per l’uso è richiesta solo la citazione della fonte. Il database viene distribuito attraverso apposito sito web, che mette a disposizione un’interfaccia di consultazione web-GIS, una sua replica per Google-Earth, e i file della parte parametrica in vari formati desktop-GIS. L’aggiornamento avviene mediamente una volta l’anno, secondo la disponibilità dei dati. La autorship è dell’INGV.

CSI - Catalogo della sismicità italiana. Il CSI è un catalogo che contiene i dati dei terremoti in Italia e aree limitrofe dal 1981 al 2002. Si basa sull’associazione dei dati del bollettino sismico ING (e INGV) e di tutte le reti regionali e locali che hanno reso disponibili i dati dei tempi d’arrivo dei terremoti. È stato sviluppato nell’ambito di un progetto finanziato dal DPC.

L’INGV mantiene anche, in forza dell’Ordinanza PCM 3519 (28/04/2006), la banca dati “zonesismiche”, che propone i valori di pericolo sismica prodotti nell’ambito dell’apposito
progetto INGV (GdL MPS, 2004; Stucchi et al., 2011) e la banca dati della pericolosità sismica prodotta nell’ambito della convenzione INGV-DPC 2006-2006 (Meletti et al., 2007), che serve di base ai dati delle Norme Tecniche 2008. Stante la natura di questi due dataset è il fatto che siano diventati un riferimento normativo, queste banche dati non vengono modificati. I dati sono accessibili a chiunque e le regole di utilizzo e di citazione sono contenute nei relativi disclaimers.

4.2. Banche dati vulcanologiche

SPEED - Scenari di Pericolosità e Danno. Questo progetto, finanziato dalla convenzione INGV-DPC 2007-2009 e per alcune sue parti da un contributo della Regione Campania, ha previsto lo sviluppo di due database, relativi al Monitoraggio e a simulazione di Scenari. SPEED - Monitoraggio, consiste in una banca dati unificata per la gestione dei dati parametrici per il monitoraggio sismico, geodetico e geochimico dei vulcani attivi della Campania. Il sistema di gestione dei dati è dotato di un’interfaccia WEB unificata. Per gli aspetti sismologici detta interfaccia integra i dati del database WBSM, per gli eventi sismici identificati e processati in modo automatico, aggiornati in tempo reale, con quelli del database GeoVes, contenente i dati definitivi, ossia revisionati dagli analisti del laboratorio di sismologia e prevede anche un database di terzo livello per dati validati dal personale in turno. L’interfaccia restituisce i dati, in formati tabulari e grafici, dei parametri più significativi acquisiti dalle reti di monitoraggio nell’area campana, nonché la geometria delle reti e le elaborazioni statistiche. Nell’ambito dell’Accordo-Quadro, il database SPEED è disponibile online ed accessibile al DPC attraverso la suddetta interfaccia WEB. SPEED-Scenari, consiste in un sito web che raccoglie informazioni relative agli scenari urtiviti e alla pericolosità da colate piroclastiche e lahar al Vesuvio e ai Campi Flegrei. Il sito permette di visualizzare e scaricare mappe digitali georeferite di pericolosità da colate piroclastiche per eventi specifici nonché mappe di pericolosità a lungo termine. I risultati delle simulazioni numeriche sono anche visualizzabili tramite animazioni video e scaricabili in formato asci. Analogamente, è possibile visualizzare e scaricare mappe digitali georeferite relative alla zonazione dei bacini e delle aree esposte a colate di fango al Vesuvio, Campi Flegrei e sui contrafforti appenninici. Il sistema contiene anche informazioni e rapporti tecnici sulla caratterizzazione degli scenari urtiviti al Vesuvio e ai Campi Flegrei e sulla loro probabilità di accadimento (albero degli eventi) e inoltre permette di visualizzare e scaricare modelli digitali del terreno della Campania a diverse risoluzioni e rappresentati secondo diversi tematismi. Il database SPEED è accessibile al DPC attraverso una interfaccia WEB riservata.

EOLO. Il database EOLO è stato sviluppato nell’ambito del progetto FIRB Project RBAU0152BJ "Dynamic of the Stromboli Explosive Source" e potenziato nell’ambito dell’emergenza Stromboli INGV-DPC 2003 per garantire il monitoraggio sismologico di Stromboli in tempo reale. EOLO è utilizzato di routine dal 2003 per emanare il comunicato giornaliero al DPC sull’attività sismica di Stromboli. Questo database consiste in una base di dati con aggiornamento automatico che contiene dati raw e dati parametrici calcolati in tempo reale. Il sistema è dotato di una interfaccia web che da accesso diretto ai risultati delle analisi automatiche. I parametri calcolati automaticamente sono molteplici e comprendono il monitoraggio delle ampiezze dei segnali sismici, del contenuto spettrale e della polarizzazione del campo d’onda sismico generato dall’attività vulcanica, l’ampiezza massima dei segnali associati all’attività esplosiva. Inoltre il sistema effettua la localizzazione automatica in tempo reale di tutti gli eventi sismici a periodo molto lungo associati all’attività esplosiva servendosi di un sistema di supercalcolo basato su cluster computing e ne calcola elaborazioni statistiche. L’interfaccia restituisce i dati in forma grafica e tabulare di tutti i parametri significativi acquisiti dalla rete sismica di monitoraggio dell’isola, nonché la geometria della rete e le elaborazioni statistiche.

VORAD – Volcanic Observatory Reserved Access Database. Per i dati di interesse del presente Accordo-Quadro parte del database sviluppato all’interno dell’Osservatorio Etna viene reso disponibile, attraverso l’interfaccia filtro rappresentata dal Sito ad Accesso Riservato già fruibile dal DPC, implementando alcuni nuovi parametri e informazioni storiche. Tali parametri ed informazioni riguarderanno discipline differenti quali la sismologia vulcanica, le deformazioni del suolo, la geochimica, la geofisica, ecc. Ad esempio: 1) banca dati parametrici dei terremoti vulcano tettonici da dati rivisti giornalmente dal Gruppo di analisi; 2) banca dati macroseismica; 3) andamento ampiezza tremore vulcanico Etna; 4) andamento tremore infrasono Etna; 5) andamento numero di eventi LP registrati all’Etna; 6) andamento del flusso di SO2; 7) andamento delle deformazioni su alcune baseline GPS all’Etna).
5. PREPARAZIONE E GESTIONE DELLE ATTIVITÀ TECNICO-SCIENTIFICHE IN EMERGENZA

5.1. Procedure in caso di emergenza sismica

In caso di terremoto significativo, il DPC contatta l’INGV e indirizza le attività di immediato e diretto interesse per le attività del Servizio Nazionale di Protezione Civile. In particolare, l’INGV parteecipa al Comitato Operativo della Protezione Civile (L. 225/92) e garantisce la presenza di una unità di personale qualificato presso la funzione tecnico-scientifica della SSI.

Qualora intervengano necessità particolari, il DPC e l’INGV concertano e definiscono modalità di trasmissione delle informazioni ad hoc, anche ricorrendo a sistemi informativi ad accesso riservato e protetto. Tali supporti e sistemi devono garantire la possibilità permanente e continua di comunicazione tra il DPC (SSI e CFC) e l’INGV.

5.2. Preparazione dell’emergenza sismica: gruppi di intervento

In caso di variazioni significative dell’attività sismica, o in caso di dichiarazione dello stato di emergenza, l’INGV provvederà, se necessario, al potenziamento delle reti di monitoraggio con apparati mobili, e campagne di misura straordinarie, e al potenziamento dei sistemi di trasmissione dei dati sia per le nuove installazioni mobili che per una maggiore sicurezza e ridondanza nella centralizzazione dei segnali. Ciò avverrà comunicando tempestivamente le attività svolte o in essere al DPC; le attività che hanno immediato interesse di protezione civile verranno concordate preventivamente con il DPC.

Struttura di Pronto Intervento di monitoraggio sismico. L’INGV si avvale di una Struttura di Pronto Intervento di monitoraggio sismico strumentale (SPI) che interviene in area epicentrale con un duplice obiettivo:

1. migliorare la qualità del monitoraggio sismico mediante l’installazione di una rete sismica temporanea a registrazione locale e/o in telemetria satellitare, a integrazione della Rete Sismica Permanente;
2. allestire un presidio tecnico/scientifico per essere presenti in area epicentrale come punto di riferimento per tutto il personale INGV coinvolto nell’emergenza e come supporto scientifico al DPC.

La SPI si compone di tre sottostrutture, operativamente autonome, ma anche facilmente integrabili in funzione dei diversi possibili scenari sismici:
A - una rete sismica mobile stand-alone (Re.Mo.);
B - una rete sismica mobile real-time (Re.Mo.Tel.);
C - un Centro Operativo di Emergenza Sismica (COES).

A - Rete sismica mobile stand-alone (Re.Mo.). È costituita, con finalità prevalentemente scientifica, da strumentazione esclusivamente dedicata alle emergenze: 8 stazioni sismometriche formate da acquisitori Reftek 130, equipaggiati da sensori velocimetri a corto periodo Lennartz 3D lite 1s e accelerometri Kinematics Episensor FBA ES-T. La dislocazione delle stazioni deve essere comunicata al DPC, da cui l’INGV recepisce eventuali indicazioni per esigenze specifiche, al fine di ottimizzare l’efficacia delle reti mobili. La buona efficienza della strumentazione è assicurata dall’attività ordinaria del personale che aderisce al servizio di reperibilità, che garantisce anche la massima tempestività di intervento in caso di evento sismico significativo su tutto il territorio italiano.

B - Rete sismica mobile Telemetrata (Re.Mo.Tel.). La struttura è costituita da strumentazione Nanometrics in grado di inviare i dati in tempo reale al centro di acquisizione dati della Rete Sismica Nazionale a Roma, rendendo possibile il miglioramento della soglia di detezione dei segnali sismici e il livello di risoluzione dei parametri ipocentrali. I dati vengono acquisiti presso il centro acquisizione dati di Roma e ridondati presso l’Osservatorio di Grottaferrata. La Re.Mo.Tel. conta fino a 9 stazioni sismometriche telemetrate presso 3 sottonodi. Il sottonodo è telemetrato a sua volta ad un centro stella dove è situato un sistema satellitare di trasmissione dati.
C - Il Centro Operativo Emergenza Sismica (COES). Una tenda a montaggio rapido costituisce la struttura base del COES, che rappresenta il presidio tecnico-scientifico dell'INGV. Attrezzato con terminali di controllo collegati via satellite alla sede di Roma, consente di seguire l'evoluzione della sequenza in tempo reale e dare supporto logistico a tutte le squadre di operatori dell'INGV presenti in zona epicentrale. Questa struttura rappresenta un punto di riferimento per il personale INGV coinvolto nell'emergenza sismica e ha una funzione di supporto per il Dipartimento di Protezione Civile.

L'attività ordinaria della SPI comprende le mansioni del personale reperibile o di riferimento di una delle sottostrette per il mantenimento in buona efficienza di tutta la strumentazione e l'attrezzatura necessaria per l'intervento. I costi effettivi dipendono fortemente dal manifestarsi o meno di emergenze e dalla loro entità.

La SPI può essere impiegata al di fuori dei casi di emergenza, ad esempio in occasione di esercitazioni di Protezione Civile o di manifestazioni a carattere divulgativo.

Gruppi di coordinamento EMERGE e QUEST. Sono strutture INGV che, in caso di emergenza, svolgono in autonomia scientifica e operativa le indagini previste dai rispettivi statuti. I gruppi mettono a disposizione del DPC i risultati delle proprie indagini anche in antepartita, fatta salvo la natura scientifica delle indagini stesse e dei relativi risultati. Il DPC cura il coordinamento tra questi gruppi e quelli di altri centri di competenza assicurando l'integrazione delle attività.

I ricercatori INGV che operano nel campo della geologia del terremoto sono organizzati al fine di effettuare il rilievo degli effetti geologici prodotti in superficie da eventi sismici di magnitudo prossima o superiore a 5.5 in Italia, in autonomia scientifica e operativa, secondo procedure proprie svolte secondo standard internazionali.

I gruppi di intervento INGV per il rilievo macroismico svolgono questa attività secondo standard e procedure proprie, comunicate al DPC, per eventi al di sopra della soglia del danno, il rilievo viene finalizzato prioritariamente alla delimitazione dell'area di maggior danno.

5.3. Dati ed elaborazioni da fornire al DPC in caso di crisi sismica

Per le attività di monitoraggio in caso di crisi sismica, verranno forniti degli aggiornamenti periodici (con periodo da concordare con il DPC a seconda del tipo di emergenza) in forma di Relazioni, integrando quanto precedentemente descritto con i dati provenienti dalla SPI e dai gruppi di coordinamento. Verranno forniti i parametri ipocentrali (latitudine, longitudine, profondità, magnitudo) delle repliche, carte della distribuzione epicentrale delle stesse, grafici dell'andamento spazio-temporale della sismicità (numero di eventi per unità di tempo, magnitudo nel tempo, ecc.).

I gruppi di coordinamento EMERGE e QUEST forniscono al DPC, con tempistica e modalità da concordare, gli aggiornamenti progressivi del rilievo geologico nonché del rilievo macroismico in forma tabellare (formato DBMI), con l'indicazione di denominazione delle località, coordinate e valori di intensità MCS/EMS. Un documento finale con i risultati complessivi del rilievo verrà in via prioritaria messo a disposizione del DPC e sarà poi diffuso via web sul sito dell'INGV.

5.4. Procedure tecnico-scientifiche in caso di emergenza vulcanica

In caso di variazioni significative dell'attività vulcanica, o in caso di dichiarazione dello stato di emergenza, il DPC indirizza le attività che riguardano l'INGV, di immediato e diretto interesse per il Servizio Nazionale di Protezione Civile.

In particolare, l'INGV partecipa al Comitato Operativo della Protezione Civile (L. 225/92) e garantisce la presenza di una unità di personale qualificato presso la funzione tecnico-scientifica della SSI.

Inoltre, l'INGV provvede ove necessario al incremento delle reti di monitoraggio, con apparati mobili, campagne di misura straordinarie e al potenziamento dei sistemi di trasmissione dei dati sia per le nuove installazioni mobili che per una maggiore sicurezza e ridondanza nella centralizzazione dei segnali. Ciò avverrà comunicando tempestivamente le attività svolte o in essere al DPC. Una volta acquisita l'informazione dell'avvenuta variazione di attività vulcanica, il CFC acquisisce dall'INGV informazioni relative ai possibili eventi ed ai conseguenti scenari di pericolosità.
In caso di attività vulcanica significativa, che abbia ripercussioni sulla popolazione e/o l’ambiente che implichino il coinvolgimento del Servizio di Protezione Civile, il DPC contatta l’INGV e indirizza le attività di immediato e diretto interesse per il Dipartimento. Qualora intervengano necessità particolari, il DPC e l’INGV concordano e definiscono le modalità di intervento.

Il DPC, ove possibile, svolge le attività di supporto con l’aiuto di mezzi aerei e natanti, nonché avvalendosi di personale specialistico (Guide Alpine Vulcanologiche, Corpo del Soccorso Alpino della Guardia di Finanza e Corpo Forestale della Regione Siciliana) anche a supporto delle attività di sorveglianza e manutenzione delle reti di monitoraggio, che di norma sono a carico dell’INGV.

5.5. Preparazione dell’emergenza vulcanica: gruppi di intervento

In caso di emergenza vulcanica, oltre ad eventuali sopralluoghi, le Sezioni vulcanologiche monitoranti dell’INGV (Catania, Napoli e Palermo) integraono le reti sismiche e geochimiche permanenti con strumentazioni mobili con l'obiettivo di migliorare la qualità del monitoraggio.

RSM-CT. La rete sismica mobile stand-alone dell'Osservatorio Etno di Catania, la cui finalità è prevalentemente scientifica, è costituita da 10 stazioni sismometriche che dispongono di acquisitori Taurus Nanometrics, sensori velocimetrici a larga banda Lennartz 3D 20s e sensori Nanometrics 120s. La strumentazione è mantenuta in efficienza attraverso attività di manutenzione ordinaria.

RSM-NA. La rete sismica mobile stand-alone dell'Osservatorio Vesuviano dispone di 15 acquisitori numerici a 3 canali e 12 acquisitori a 6 canali, questi ultimi per una configurazione a doppio sensore. I sensori triassiali a disposizione sono 30 a corto periodo (1 s), 15 a medio periodo (20 s), 12 a larga banda (60-120 s) e 16 accelerometri. Inoltre è disponibile un acquisitore a 18 canali per la realizzazione di un array mobile. Questi apparati, di rapida installazione, utilizzati anche per lo studio degli apparati vulcanici, consentono l'analisi non in linea dei dati. Per il potenziamento della rete di monitoraggio centralizzata è in corso l'ampliamento della rete di trasmissione WiFi sui vulcani della Campania, in grado di assicurare l'immediata centralizzazione ed analisi dei dati di nuove installazioni per il monitoraggio sismico, deformativo, geochimico e termico.

RGM-PA. La rete mobile per il monitoraggio dei parametri geochimici gestita dalla sezione di Palermo consta di 5 stazioni per il monitoraggio dei flussi diffusi di CO₂ dai suoli e una stazione per il monitoraggio dei parametri chimico-fisici delle acque di falda. Realizzata per finalità di ricerca, può essere positivamente utilizzata ad integrazione delle strumentazioni permanenti o per studiare nuovi elementi strutturali. La rete dispone di doppio sistema di trasmissione dati (radio su frequenza dedicata e/o GSM) nonché di un sistema mobile di visualizzazione ed elaborazione dati. Attualmente la rete è utilizzata per lo studio di siti per l’ampliamento delle reti geochimiche permanenti (Accordo di Programma Quadro con la Regione Siciliana).

5.6. Dati ed elaborazioni da fornire al DPC in caso di crisi vulcanica

In caso di evento eruttivo, l’INGV fornisce al DPC, con tempistica e modalità da concordare:
- Quadro della sismicità e delle deformazioni del suolo.
- Rilevamento, classificazione e mappe di distribuzione e del materiale piroclastico emesso.
- Mappe di previsione della distribuzione di ceneri vulcaniche (anche in formato vettoriale) al suolo basate su dati meteo.
- Mappe di previsione dei flussi lavici, anche basate su simulazioni numeriche.
- Mappe dell’andamento del campo lavico, compresi gli aggiornamenti progressivi del rilievo secondo i formati concordati.
- Relazioni periodiche sui dati acquisiti dalle reti mobili.
- Mappe sulla distribuzione areale del degassamento di CO₂ diffusa dai suoli.
6. FORMAZIONE, COMUNICAZIONE E DIVULGAZIONE SUI TEMI DELLA PERICOLOSITÀ E RISCHIO SISMICO, VULCANICO E DA MAREMOTI ASSOCIATI

Il DPC è impegnato nelle attività di formazione, comunicazione, informazione e divulgazione del rischio sismico, vulcanico e da maremoti, attraverso l’Ufficio “Rischio sismico e vulcanico” per le competenze tecnico-scientifiche, l’Ufficio “Volontariato, formazione e comunicazione” per gli aspetti di indirizzo e raccordo delle attività di formazione delle diverse componenti e strutture operative del Servizio nazionale, e l’Ufficio Stampa del Capo del Dipartimento per i rapporti con i media, italiani e internazionali.

L’INGV è attivo da molti anni sui temi della formazione e divulgazione, che rientrano nei suoi compiti istituzionali. La maggior parte di queste attività rientra negli interessi del DPC e, pertanto, le modalità di attivazione e realizzazione verranno concordate con il DPC stesso, con il quale verrà definito un calendario delle iniziative, in modo da allinearle a quelle messe in campo dal DPC, direttamente o attraverso altri enti ed istituzioni. In particolare, anche sulla base dell’esperienza e dei risultati maturati nell’ambito del Progetto Edurisk, DPC e INGV progetteranno nuove attività per perseguire i comuni obiettivi.

A tal fine, verrà istituito un gruppo di lavoro DPC-INGV che svilupperà uno specifico programma di azione secondo le seguenti linee:

- scambio reciproco di informazioni sulle iniziative dei rispettivi Enti in corso e in preparazione;
- promozione e organizzazione di iniziative comuni per la divulgazione (mostre, brochure, web, video, ecc.);
- promozione e organizzazione di iniziative comuni per la formazione di specifici gruppi di utenti (autorità locali, docenti, professionisti, studenti, giornalisti, ecc.);
- modalità di informazione e comunicazione durante le crisi sismiche e quelle vulcaniche alla popolazione e ai media.
Appendice A1 - Monitoraggio sismico

Il monitoraggio sismico del territorio nazionale è un sistema complesso in tutte le sue componenti, dalla sensoristica usata ai sistemi di acquisizione e di analisi. La Tabella 1 riporta lo stato attuale della Rete Sismica Nazionale dell'INGV e delle altre reti collegate in tempo reale, che contribuiscono al sistema di monitoraggio. Tutti i dettagli tecnici della rete sono disponibili, per ciascun sito, su iside.rm.ingv.it. Di seguito se ne descrivono brevemente le caratteristiche principali.

Sensoristica
I siti delle stazioni hanno diversi sensori installati, sia sismologici che geodetici. I sensori sismici possono essere a largissima banda, larga banda o banda allargata (360s, 40s, o 5s, rispettivamente). Negli anni precedenti sono stati eliminati quasi tutti i sensori a corto periodo in un processo di ottimizzazione della rete. In circa 100 siti sono installati sensori geodetici a doppia frequenza, che costituiscono l'ossatura della Rete Integrata Nazionale GPS. Questa consiste in 150 ricevitori, oggi strumento essenziale per gli aspetti sismologici a seguito di forti eventi. Inoltre, in 80 siti sono stati installati accelerometri; altri sono invece non integrati con altri sensori per un totale di circa 100 accelerometri.

Digitalizzatori
Il segnale dei sensori sismici viene digitalizzato e temporizzato direttamente nei siti di acquisizione. I digitalizzatori usati sono anche essi di diverso tipo, sia commerciali (Taurus Nanometrics, ad es.) che di realizzazione presso i laboratori INGV (Gaia). I digitalizzatori realizzati presso INGV sono a basso costo e mantengono la qualità dei prodotti commerciali.

Sistemi di trasmissione dati
La ridondanza dei vettori di trasmissione usati nei siti della rete nazionale è un valore importante, anche se ha la conseguenza di una estrema richiesta di professionalità dei tecnici che svolgono la manutenzione e dei sistemi di controllo. In generale vengono usati sistemi satellitari, sia UDP che TCPIP su satelli diversi (Intelsat, HellasSat e HotBird), per garantire un'equilibrata gestione di eventuali guasti ai satelli o ai telepunto. Le stazioni che trasmettono i dati usando il vettore satellitare rappresentano circa il 60% della rete sismica. Una buona percentuale è rappresentata da connettività via terra, sia in intranet che in internet, quest'ultima usata soprattutto per l'acquisizione di stazioni appartenenti ad altre reti. Dal 2010 sono in sperimentazione sistemi WiFi o UMTS; essi rappresentano ancora una piccola percentuale, ma se ne prevede un importante sviluppo nei prossimi anni. Sono stati eliminati, come processo di ottimizzazione del 2010, tutti i collegamenti in cda dedicati.

Sistemi di acquisizione
I dati delle stazioni sono acquisiti in tempo reale sia nella sede centrale (Roma) che in alcune delle sedi periferiche dell'INGV (Grottaminarda, Catania, Napoli); questa scelta è anch'essa volta a garantire una corretta ridondanza del sistema di acquisizione. I dati satellitari sono acquisiti direttamente tramite intranet, in modo da poterli visualizzare anche in assenza di segnale diretto agli hub centrali di Roma, Grottaminarda o Catania. I dati sismici e geodetici delle stazioni appartenenti ad altre reti (OGS, Università di Genova, etc.) sono sempre acquisiti con sistemi terrestri e, in alcuni casi (stazioni dell'OGS), rappresentano una debolezza del sistema che al momento non è possibile ottimizzare. I dati vengono acquisiti tramite server dedicati e ridondati (naqserver, seedlink server, etc.) e, quindi, trasmessi a server dedicati all'analisi in tempo reale dei segnali.

Sistemi di analisi
Al momento ci sono due sistemi di analisi dei dati sismici che garantiscono detection, trigger e location degli eventi sismici. Il sistema attivo è backnet ed è ridondato dal sistema earthworm, che a breve diventerà il sistema principale. Tutti e due i sistemi sono a loro volta ridondati a Roma, e il sistema earthworm è anche attivo a Grottaminarda. Il sistema earthworm gestisce anche il dato accelerometrico, mentre il dato geodetico in tempo reale è acquisito su server dedicati e ridondati a Roma e a Grottaminarda.

Archiviazione e distribuzione dati
I dati sismici acquisiti ed elaborati sono archiviati su una Storage Area Network (SAN) presso la
sede centrale e in una SAN a Grottaminarda per la necessaria ridondanza e sicurezza del dato. Anche i dati geodetici sono archiviati su una SAN a Grottaminarda. La distribuzione dei dati sismici avviene attraverso portali che sono http://iside.rm.ingv.it, dove è possibile avere tutte le informazioni parametriche relative alle localizzazioni, e http://eida.rm.ingv.it, dove è possibile avere le forme d’onda delle stazioni sismiche della rete nazionale. I dati geodetici nel formato rinex sono invece distribuiti da due server dedicati (gpsfree.rm.ingv.it e gpsgiving.int.ingv.it).

Sale di monitoraggio
Le sale di monitoraggio rappresentano l’ultimo anello del sistema di monitoraggio. La sala h24/7 di Roma è ridondata da quella di Grottaminarda, che non è h24/7 ma è organizzata con una reperibilità attiva h24/7. Nelle sale dove si svolge il servizio di sorveglianza, i turisti hanno computer per analisi in post-processamento e sistemi di visualizzazione dell’informazione su videowall. Accanto alle operazioni di sorveglianza, un server riservato e ridondato (geoserver.rm.ingv.it e label2.rm.ingv.it) garantisce al DPC l’accesso alle informazioni dirette prodotte nelle sale di monitoraggio.

a. Gestione e operatività del sistema di monitoraggio.
Per quanto esposto precedentemente, il mantenimento del sistema di sorveglianza prevede costi relativi alla gestione e all’operatività dell’infrastruttura le cui voci posso essere così sintetizzate:

- contratti di locazione dei siti della rete sismica;
- contratti di connettività per la trasmissione dei dati;
- contratti o convenzioni con altri Enti o Università per lo scambio di dati;
- contratti di assistenza HW e SW per i server dedicati alla acquisizione, elaborazione e distribuzione dei dati;
- contratti di assistenza per i sistemi di visualizzazione;
- licenze SW per le analisi e per il server di condivisione delle informazioni;
- autovetture per la manutenzione ordinaria e straordinaria della rete;
- attrezzatura di laboratori e DPI per il personale che deve mantenere in efficienza la rete;
- cancelleria e materiale di consumo vario (dischi, etc.)
- personale impegnato nella gestione della rete;
- personale impegnato nei turni di sorveglianza;
- personale impegnato nell’elaborazione dei dati.

Non vengono in questa sede specificate le gestioni indirettamente legate al sistema di monitoraggio, ma essenziali comunque per il suo buon funzionamento, come ad esempio la gestione dei sistemi di condizionamento del CED.

b. Manutenzione ordinaria e straordinaria del sistema di monitoraggio.
La manutenzione ordinaria viene svolta da personale INGV, riguarda tutti i componenti che partecipano al sistema di monitoraggio e include interventi di manutenzione, quali pulizia dei siti, verifica e controllo della qualità dei dati, interventi programmati per sostituzione batterie, che possono essere così riassunti:

- verifica periodica ai siti per pulizia e taglio erba;
- verifica periodica ai sistemi di alimentazione e di trasmissione;
- costante controllo di qualità dei segnali acquisiti;
- controllo dei sistemi di acquisizione dati;
- controllo dei sistemi anti-virus dei server di acquisizione.

Non vengono in questa sede specificate le manutenzioni indirettamente legate al sistema di monitoraggio ma comunque essenziali per il suo buon funzionamento, come ad esempio la manutenzione dei sistemi di condizionamento dei CED.

La manutenzione straordinaria viene effettuata da personale INGV su tutto il territorio nazionale e riguarda sia la parte di segnalazione guasti che di interventi di ripristino a seguito di accertamento di guasto. Di norma, i guasti vengono riparati entro breve tempo dalla loro segnalazione. L’intervento consiste spesso nella sostituzione delle parti non funzionanti, in una prima verifica in laboratorio per accertare il livello di guasto della strumentazione, nell’eventuale riparazione in laboratorio o nella spedizione presso laboratori certificati.
Appendice A2 - Monitoraggio vulcanico

Il monitoraggio delle aree vulcaniche italiane viene svolto attraverso un complesso sistema osservativo multidisciplinare basato su un insieme di tecniche e metodologie di indagine geofisica, geochimica, vulcanologia, satellitare. Il monitoraggio geofisico si basa sulla variazione di parametri fisici che accompagnano la migrazione del magma verso la superficie quali la sismicità, le variazioni di forma dell'edificio e del campo gravimetrico. Le metodologie geochimiche utilizzano le variazioni nella composizione chimica ed isotopica dei fluidi emessi dal complesso vulcanico prodotte dalla dinamica magmatica. I rilievi Vulcanologici e le indagini mineralogiche e petrografiche delle ceneri e dei prodotti eruttivi completano il quadro delle informazioni che, allo stato attuale delle conoscenze, può essere utilizzato ai fini di ipotizzare le più probabili fenomenologie eruttive future ed i loro effetti sull'ambiente.

Il sistema osservativo sviluppato in questi anni dall'INGV applica queste metodiche attraverso reti di misura automatiche ed attività di campagna e di laboratorio.

Monitoraggio dei parametri geofisici
Le stazioni di monitoraggio sono di due tipologie: monoparametriche e multiparametriche. Queste ultime hanno diversi tipi di sensori installati (es. sismologici, geodetic, meteo). Oltre il 50% dei siti oggi condivide sensori sismici e geodetic che costituiscono l'ossatura della Rete Multiparametrica Integrata, strumento essenziale per il monitoraggio geofisico dei vulcani.

Relativamente ai sensori sismici, questi possono essere a larga banda (sensori da 120s a 40s), o a corto periodo (1s). Negli ultimi anni si è provveduto ad ottimizzare le reti, attraverso il rinnovamento tecnologico delle stazioni sostituendo le vecchie strumentazioni analogiche (8 ancora operative tra l'Etna e le isole Eolie, 20 nelle aree vulcaniche della Campania) dotate di sensori a corto periodo, con strumentazione digitale dotata di sensori triassiali a corto periodo (3 stazioni ed un array di 16 sensori nelle aree vulcaniche della Campania) ed a larga banda (33 Etna, 26 isole Eolie di cui 9 a Vulcano e 14 a Stromboli, 1 Pantelleria, 15 nelle aree vulcaniche della Campania). In diversi siti sono stati installati anche sensori accelerometrici (11 tra l'Etna e le isole Eolie, 2 nelle aree vulcaniche della Campania) mentre altri presentano sensori infrasonici (11 stazioni nell'area Etna, 15 nelle aree vulcaniche della Campania) e stazioni meteo (2 stazioni all'Etna, 3 nelle aree vulcaniche della Campania). Maggiori dettagli sono riportati negli allegati "Reti Geofisiche e Vulcanologiche". Il segnale dei sensori sismici viene digitalizzato e temporizzato direttamente nei siti di acquisizione. I digitalizzatori usati sono principalmente della Nanometrics, mentre per i vulcani della Campania e per Stromboli sono utilizzati apparati realizzati dall'INGV (GAIA e GILDA).

Per quanto concerne il monitoraggio delle deformazioni del suolo questo viene effettuato con reti permanenti di stazioni GPS (37 Etna, 16 isole Eolie, 3 Pantelleria, 29 nelle aree vulcaniche della Campania), clinometriche (14 Etna, 10 Eolie, 3 Pantelleria, 9 nelle aree vulcaniche della Campania), dilatometriche (2 Stromboli). All'isola di Stromboli (Sciara del Fuoco) è installato un sistema di monitoraggio costituito da 23 capsali misurati in continuo da una stazione totale robotizzata. Alle reti permanenti si aggiungono periodiche campagne di misura di reti geodetiche (GPS, livellazioni) all'Etna, alle isole Eolie e Pantelleria per un complessivo numero di 630 capsali, mentre per i vulcani della Campania i vertici predisposti per le campagne di misura GPS sono circa 70, quelli per le livellazioni di precisione circa 1000, distribuiti su 500 km lineari complessivi raggruppati in circuiti concatenati (Vesuvio 270 km 359 capsali, Campi Flegrei 136 km 360 capsali, Ischia 100 km 257 capsali).

Relativamente al monitoraggio gravimetrico e magnetico, attualmente sono operative in continuo all'Etna e allo Stromboli un numero complessivo di 4 stazioni gravimetriche, 13 magnetometri (5 magnetometri scalari, 5 gradiometrici, 3 vettoriali) e 3 stazioni geoelettriche, mentre al Vesuvio ed ai Campi Flegrei sono operative due stazioni gravimetriche in registrazione continua. A queste si aggiungono misure discrete di tipo gravimetrico utilizzando 71 capsali all'Etna, 32 a Vulcano, 22 a Pantelleria ed 85 nelle tre aree vulcaniche attive della Campania, in cui sono anche eseguite misure assolute di gravità.

Monitoraggio dei parametri geochimici
La sorveglianza geochimica delle aree vulcaniche attive si basa sul monitoraggio delle fasi flue rilasciate da sistemi vulcanici e geotermici, attraverso misure continue (effettuate con reti di misura automatiche con trasmissione dei dati) ed indagini discrete periodiche (consistenti in misure e campionamenti di acque e gas con frequenze di intervento differenti, adeguate al livello di
pericolosità di ciascuna delle aree sorvegliate). I presupposti scientifici che stanno alla base di tali attività derivano dal fatto che le specie gassose dischiute nel magma vengono rilasciate in quantità considerevoli ed in modo differenziato durante la risalita verso la superficie. Ciò consente di evidenziare, attraverso l'analisi dei fluidi, l'ingresso di nuovo magma nei condotti di alimentazione di un vulcano, studiare i processi di trasferimento di questo nella crosta, verificare fenomeni di accumulo di gas, valutare i livelli di pericolosità vulcanica ed effettuare ipotesi a breve e medio termine sulle sue potenziali evoluzioni.

Misure continue
Le reti geochimiche attualmente in uso consentono di misurare un elevato numero di parametri fra i quali i flussi di SO₂ ed i rapporti C/S, F/S C/S nei plume, i flussi di CO₂ diffusi dai suoli, le pressioni ed le temperature fumaroliche, i tenori di radon ed i gradienti di temperatura nel suolo, i parametri chimico-fisici delle acque e la pressione totale dei gas dischiuti, i parametri meteo. Nella tabella seguente vengono indicate, per ciascuna area vulcanica, le stazioni installate ed i parametri monitorati.

<table>
<thead>
<tr>
<th>Area</th>
<th>N° stazioni</th>
<th>Parametri monitorati</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etna</td>
<td>3</td>
<td>PA: Rapporto C/S nel plume (Sensori elettrochimici)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>CT: Flusso di SO₂ nel plume (UV-Scanner)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>CT: Tenore Radon</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>PA: Flusso di CO₂ nei suoli (IR) + meteo</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>PA: Parametri chimico-fisici delle acque + meteo</td>
</tr>
<tr>
<td>Vulcano</td>
<td>14</td>
<td>PA: Flusso di CO₂ nei suoli (IR) + Parametri chimico-fisici delle acque + temperatura fumarolica + flusso di calore + meteo</td>
</tr>
<tr>
<td>Stromboli</td>
<td>4</td>
<td>CT: Flusso di SO₂ nel plume (UV-Scanner)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CT: Rapporto HF/SO₂ HCl/CO₂ (FTIR)</td>
</tr>
<tr>
<td>Campi Flegrei</td>
<td>1</td>
<td>PA: Flusso di CO₂ nei suoli (IR) + parametri chimico-fisici delle acque + TDGP + flusso di calore + meteo</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>1</td>
<td>NA: Flusso di CO₂ nei suoli (IR) + meteo + pressione dinamica delle fumarole</td>
</tr>
<tr>
<td>Pantelleria</td>
<td>1</td>
<td>NA: Flusso di CO₂ nei suoli (IR) + meteo</td>
</tr>
</tbody>
</table>

Alcune tipologie di stazioni (flussi CO₂, parametri chimico-fisici, TDGP) sono state sviluppate e realizzate nei laboratori di meccanica ed elettronica dell'INGV.

Misure e campionamenti discreti di acque e gas - Forniscono dati sulla composizione chimica (elementi maggiori ed in tracce) ed isotopica dei fluidi. Queste misure sono complementari rispetto alle informazioni acquisite mediante le reti di monitoraggio automatico in quanto consentono di acquisire dati su un numero maggiore di parametri rispetto alle reti di monitoraggio ed esplorare ampi settori dei vulcani non coperti dalle reti. I dati acquisiti mediante indagini discrete vengono impiegati per lo sviluppo di modelli termodinamici attraverso cui è possibile interpretare le anomalie e valutare i livelli di pericolosità vulcanica. Inoltre questi dati vengono utilizzati per la calibrazione della sensoristica utilizzata dalle reti.

Nei gas liberi e disciolti viene determinata il chimismo (H₂, O₂, N₂, CO, CH₄, CO₂, H₂O) e la composizione isotopica (^18O/H₂O e δ¹³C_CO₂). Nelle acque viene determinata la composizione chimica (elementi maggiori ed in tracce) ed isotopica (δ¹⁸O, δD). Al momento del prelievo vengono misurati anche i principali parametri chimico-fisici: temperatura, pH, Eh, conducibilità elettrica. La tabella seguente indica, per ciascuna area vulcanica, i) il numero di interventi effettuati per anno; ii) il numero di siti monitorati; iii) la tipologia delle misure e dei campionamenti.

<table>
<thead>
<tr>
<th>Etna</th>
<th>Campionamento ed analisi chimica ed isotopica delle acque e dei gas disciolti nella faldà attraverso campionamenti effettuati con frequenza mensile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA 12 siti: Monte Ilice, S. Giacomo, Ponteferro, Guardia, fontana del Cherubino, Currune, Acqua Difesa</td>
</tr>
<tr>
<td>Tabella</td>
<td>Descrizione</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Prospezioni mensili per la stima del flusso diffuso di CO₂ dai suoli</td>
<td>Acquarossa, Acqua Grassa, Romito, Sodicchiata, Rocca Campana; PA: 140 siti suddivisi in 3 settori: Paternò, Zafferana-S. Venerina e Pernicana</td>
</tr>
<tr>
<td>Analisi dei rapporti CO₂/SO₂ nei gas del plume emessi dai crateri dell'Etna misurati in modo discreto attraverso misure a cadenza quindicinale/mensile (in relazione alle condizioni meteo);</td>
<td>Voragine, BNC, NORD-EST</td>
</tr>
<tr>
<td>Misure settimanali del flusso di SO₂ e BrO nel plume mediante sensori miniDOAS</td>
<td>CT</td>
</tr>
<tr>
<td>Misure settimanali del rapporto HF/SO₂ HCl/SO₂ mediante FTIR (2 spettrometri).</td>
<td>CT</td>
</tr>
<tr>
<td>Misure mensili di gas nei suoli mediante sensori Radon (4 sonde) ed He</td>
<td>CT</td>
</tr>
<tr>
<td>Vulcano</td>
<td>Determinazione del chimismo e della composizione isotopica delle acque e dei gas disciolti nella falda attraverso prospezioni effettuate con frequenza bimestrale</td>
</tr>
<tr>
<td>Flusso diffuso di CO₂ dai suoli nell’area di Vulcano Porto; le misure vengono effettuate con cadenza bimestrale</td>
<td>50 punti di misura distribuiti su un’area di circa 2.2 Km²</td>
</tr>
<tr>
<td>Determinazioni bimestrali del chimismo e della composizione isotopica dei gas di alta temperatura del campo fumarolico del cratere La Fossa</td>
<td>PA 4 fumarole: F0, FA, F5AT, F11</td>
</tr>
<tr>
<td>Stromboli</td>
<td>Determinazione mensile del chimismo e della composizione isotopica delle acque e dei gas disciolti nella falda termale</td>
</tr>
<tr>
<td>Campi Flegrei</td>
<td>PA 3 siti: Fulco, Zurrò, COA.</td>
</tr>
<tr>
<td>Campagne mensili di campionamento delle fumarole per la determinazione della composizione chimica ed isotopica</td>
<td>NA 2 fumarole: Bocca Grande e Bocca Nuova</td>
</tr>
<tr>
<td>Vesuvio</td>
<td>Campionamento semestrale delle falde: analisi chimica dell’acqua. Campagne mensili di campionamento fumarolico (bordo craterico e fondo)</td>
</tr>
<tr>
<td>Ischia</td>
<td>PA 9 siti: 51b,54,HM,32,35,36,41,Olivella, Castellamare</td>
</tr>
<tr>
<td>Determinazione della composizione chimica ed isotopica delle acque e dei gas disciolti della falda. Campionamento semestrale</td>
<td>PA 15 siti: S.Lorenzo, Sorg. Stefania, La Pergola 1 e 2, S. Michele, P.Smeraldo, SAFEN, Nitroso, Diardino delle Nife, Castiglione 2 e 3, Thermal Centre 1 e 2</td>
</tr>
<tr>
<td>Determinazione della composizione chimica ed isotopica dei gas campionati in aree fumaroliche ed in aree a degassamento anomalo. Campionamento semestrale</td>
<td>PA 3 siti: Case Vittorio, SAFEN, Maronti.</td>
</tr>
<tr>
<td>Pantelleria</td>
<td>Determinazione della composizione chimica ed isotopica delle acque e dei gas disciolti. Misura dei parametri chimico-fisici delle acque. Cadenza semestrale</td>
</tr>
<tr>
<td>Determinazione della composizione chimica ed isotopica dei gas campionati in aree</td>
<td>PA 3 siti: Favare, Gadir, Pola 3.</td>
</tr>
<tr>
<td>Panarea</td>
<td>Una campagna annuale per il campionamento dei fluidi di bassa termalità presenti nell'isola in cui vengono determinate la composizione chimica ed isotopica.</td>
</tr>
</tbody>
</table>

Nella successiva tabella, vengono elencate le strumentazioni da laboratorio utilizzate per la determinazione della composizione chimica ed isotopica nei campioni di fluidi prelevati nelle aree vulcaniche.

| Chimica delle acque | Cromatografia liquida | Determinazione quantitativa dei cationi ed anioni nei campioni di acque:
N. 2 - DIONEX DX 120. (PA)
N. 2 - DIONEX ICS 1100 (PA)
N. 1 - METROHM (PA)
N1 - DIONEX ICS 3000 (NA-OV)
N. 1 DIONEX DX 500 (NA-OV) |

| | METROHM 761 COMPACT IC - METROHM 766 IC SAMPLE PROCESSOR - Determinazione del contenuto anionico delle acque naturali, dei fluidi fumarolici (ampolle alcaline) e derivati dal desorbimento di trappole alcaline.
Spettrofotometro SHIMADZU UV – 1601 - Determinazione quantitativa di boro ed ammoniaca in acque e condensati fumarolici |

| | ICP-MS | AGILENT 7500ce con sistema ORS (Octapole Reaction System) - Determinazione quantitativa di elementi in tracce in liquidi e solidi (PA).
THERMO Fisher X2 serie - Determinazione quantitativa di elementi in tracce in liquidi (NA-OV) |

| Chimica dei gas | Gas-cromatografia | Determinazione quantitativa di He, H2, O2, N2, CO, CH4, CO2 in gas liberi, gas dischiolti in acqua o gas arricchiti in ampolle alcaline.
N°1 - PERKIN ELMER Clarus 500 equipaggiato con colonna 60/80 Carboxen 1000, detector TCD, metanizzatore e FID disposti in serie – (PA)
N°1 SHIMADZU 2010 colonna poraplot Q e detector FID per idrocarburi leggeri C1-C5 (PA).
N.3 AGILENT Technologies mod. 6890 N con detector TCD, FID ed RDG2 (NA-OV)
N. 1 ALCATEL ASM 142 He Leak Detector (NA-OV) |

| | | N°2 - Perkin Elmer XL Autosystem colonna 60/80 Carboxen 1000 e RT MolSieve 5A, detector TCD, metanizzatore e FID - Determinazione quantitativa di He, H2, O2, N2, CO, CH4, CO2 e di Ar, H2, O2, N2, CO, CH4 in gas liberi, gas dischiolti in acqua o gas arricchiti in ampolle alcaline. (PA) |

| Isotopi delle acque e dei gas | Isotopi Stabili | GV 2003 con Gilson XL222 e Carb Prep System Determinazioni: - δ18O (H2O)- δ13C(TDIC) (Total Dissolved Inorganic Carbon) - δ13C e δ18O in carbonati solidi (PA)
FINNIGAN DELTA PLUS con Dual Inlet System – Multiport – Micro volume Determinazioni: - δ13C e δ18O della CO2 in campioni gassosi (PA) |
<table>
<thead>
<tr>
<th>Isotopi dei gas Nobili (PA)</th>
<th>Laser Ablation</th>
<th>Spettrometria di massa</th>
<th>ICP-MS</th>
<th>Spettroscopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELIX SFT - spettrometro di massa a magnete variabile in vuoto statico con doppio “flight tube” per la determinazione dei rapporti isotopici 3He/4He.</td>
<td>COHERENT Geolas COMPex Pro 100 excimer laser device Laser wavelength 193 nm (PA)</td>
<td>HELIX SFT a magnete variabile in vuoto statico con doppio flight tube per la determinazione dei rapporti isotopici dell’Elío (PA)</td>
<td>AGILENT 7500ce con sistema ORS (Octapole Reaction System) - Determinazione quantitativa di elementi in tracce nelle melt inclusions (PA).</td>
<td>Misure di SO$_2$ nei plumes vulcanici</td>
</tr>
<tr>
<td>ARGUS - spettrometro di massa a magnete variabile in vuoto statico, per l’analisi isotopica dell’Argon.</td>
<td></td>
<td></td>
<td></td>
<td>Mini DOAS (PA)</td>
</tr>
<tr>
<td>HELIX MCT - Multicollector tube - spettrometro di massa a magnete variabile che lavora in condizioni di vuoto statico, realizzato per l’analisi isotopica di Ne, Ar, Kr, Xe.</td>
<td></td>
<td></td>
<td></td>
<td>- Active DOAS della Oceanoptics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Camera UV sperimentale per la determinazione dei tenori di SO$_2$ in atmosfera (PA).</td>
</tr>
</tbody>
</table>

Monitoraggio vulcanologico
Il monitoraggio dei fenomeni eruttivi viene eseguito attraverso telecamere nelle bande del visibile e dell’infrarosso termico con trasmissione automatica e centralizzazione dei dati (6 Etna, 3 Stromboli, 2 Vulcano, 2 ai Campi Flegrei, 1 al Vesuvio; per maggiori dettagli si veda l’allegato “Reti Geofisiche e Vulcanologiche”) e con campagne di misura periodiche, realizzate con frequenza commensurata al livello di attività. Il rilevamento dell’attività esplosiva viene effettuato mediante radar Doppler (1 Etna), disdrometri (2 Etna) e la stazione di ricezione delle immagini Meteosat. Queste attività sono integrate dai rilievi dei prodotti eruttivi effettuati in campagna ed elaborati nel laboratorio di cartografia, e dalle analisi di laboratorio della composizione geochimica, petrografica e sedimentologica (Fluorescenza ai raggi X, Microscopia elettronica con microanalisi EDS, Microscopia ottica, Analisi granulometriche).

Telerilevamento satellitare
L’INGV dispone di tre sistemi di acquisizione satellitare dedicati al monitoraggio delle aree vulcaniche italiane. I sistemi permettono di acquisire immagini da diversi satelliti in real-time e in real-time (notte e giorno) e di fornire l’estrazione di parametri, quali: temperatura superficiale, Effusion Rate, contenuto di SO$_2$, aerosol vulcanici emessi nel plume etneo, rilevamento e concentrazione di cenere nei plumes eruttivi. Campagne di misura con spettro-radiometri portatili e confronti con i dati acquisiti da reti terrestri (geochimiche, telecamere) vengono effettuati periodicamente per validare i dati satellitari.

Sistema Multimissione KONGSBERG (attivo dal 2010) composto da un’antenna in banda L/X per la ricezione di dati di satelliti polari (NASA-MODIS, CINA-FY-1) e un’antenna KU EUAMETSAT per ricezione dei dati METOP ed MSG e altri sistemi geostazionari (GOES, METSAT). Sistema multimissione è finalizzato all’integrazione dei dati satellitari durante le fasi eruttive dell’Etna e dello Stromboli ma anche per eventi relativi a vulcani non italiani come avvenuto nel 2010 per l’eruzione dell’Eyjafjallajökull in Islanda e del Merapi in Indonesia.

Stazione per l’acquisizione di immagini METEOSAT-MSG-SEVIRI (attiva dal 2006). Il sistema è
dedicato al monitoraggio dell’Etna ed invia automaticamente immagini alla sala operativa dell’Osservatorio Etneo di Catania.

Stazione TERA SCAN L-Band HPRT di ricezione dati satellitari AVHRR a bordo della costellazione di satelliti NOAA (attiva dal 2004) che permettono il monitoraggio del territorio italiano tra le 5 e le 8 volte al giorno.

Sistemi di trasmissione dati
La ridondanza dei vettori di trasmissione usati nelle reti in area vulcanica è un valore essenziale per garantire la continuità dell’acquisizione. In generale vengono usati sistemi satellitari su satelliti diversi (IntelSat, HellasSat) per garantire un’equilibrata gestione di eventuali guasti ai satelliti. Le stazioni che trasmettono i dati usano sia vettori trasmissivi terrestri che satellitari. Il vettore satellitare viene usato per circa il 50% delle stazioni della rete sismica e GPS. La trasmissione di tipo terrestre utilizza sistemi in radiofrequenza (UHF, UMTS, SpreadSpectrum e WiFi).

Nell’area campana oltre a sistemi di trasmissione di tipo terrestre, sono state implementate anche linee ADSL, per ridondanza e backup dei dati acquisiti localmente; alcune stazioni a basso flusso di dati utilizzano anche linee GSM. Il sistema GSM è anche utilizzato, dove possibile, per l’attivazione di sistemi di telecontrollo della strumentazione periferica.

Negli ultimi anni si è proceduto a eliminare progressivamente, come processo di ottimizzazione, i collegamenti in cda dedicati. Alcuni dei punti di raccolta dati e le sedi sono interconnesse mediante linee dedicate internet (GARR, SPC).

Molti dei reti di monitoraggio geochimico dispongono di sistemi misti di trasmissione dati: internet/UHF o GSM (quest’ultimo sistema verrà progressivamente abbandonato).

Sistemi di acquisizione dati
I dati delle stazioni permanenti sono acquisiti in tempo reale sia nelle sedi centrali (Catania-Palermo-Napoli) che in alcune delle sedi periferiche (CUAD-CT, Lipari, Nicolosi, Stromboli, Ov-Ercolano) e in siti particolarmente attrezzati (Posilippo-Napoli, Camaldoli della Torre-Torre del Greco Oss. Casamicciola-Iscia), nell’ottica di garantire una maggiore sicurezza e ridondanza anche in caso di caduta di collegamento tra le sedi. I dati satellitari sono acquisiti direttamente presso la sede del CUAD-CT dove sono co-localizzati gli HUB e trasmesse interret, trasmessi, alla Sala Operativa dell’Osservatorio Etneo di Catania. I dati vengono acquisiti tramite dei server dedicati e ridondati e quindi trasmissi ai server dedicati all’analisi in tempo reale dei segnali.

Sistemi di analisi dei segnali
Relativamente ai dati sismici, al momento ci sono due sistemi di analisi che garantiscono la detection, trigger e location degli eventi sismici. I sistemi sono basati sul sistema earthworm, che a breve diventerà il sistema principale, e su un sistema proprietario dell’INGV. Il sistema earthworm gestisce i dati sismici, accelerometrici, infrasonic e dilatometrici. Inoltre sono attivi sistemi di analisi basati su calcolo parallelo, realizzati con cluster di processori, utilizzati per l’analisi in tempo reale dei dati sismici e per la simulazione numerica dei processi vulcanici, sia di processi esterni quali il trasporto e deposito delle ceneri, che interni tra cui i processi deformativi e la risalita di gas nei condotti vulcanici (132 e 56 processori dedicati). Per quanto riguarda le reti GPS, i dati sono analizzati mediante software dedicato (GAMIT, RTD, TGO e software proprietario). Le analisi delle reti permanenti forniscono la posizione e la velocità di ciascuna stazione con frequenza giornaliera e, per alcune stazioni, anche ad alta frequenza (di norma 1 Hz). Le reti clinometriche sono acquisite sia mediante software proprietario, che ne consente l’analisi a bassa e ad alta frequenza, che tramite software sviluppato dall’INGV. Il monitoraggio delle deformazioni del suolo è completato dall’analisi di dati satellitari SAR mediante software commerciali e di pubblico dominio (p.es.: SAR-Scape, ROI-Pack, IDL).

I dati delle reti per il monitoraggio dei parametri geochimici, nella maggioranza dei casi, sono gestiti mediante software sviluppato dall’INGV sia per la gestione delle stazioni che per l’elaborazione, lo storage e la visualizzazione.

Archiviazione e distribuzione dati
Le sezioni che si occupano del monitoraggio vulcanico utilizzano sistemi differenti in relazione al segnale monitorato. I dati geofisici acquisiti dalle stazioni remote dell’Osservatorio Etneo di Catania vengono elaborati da sistemi dedicati ed archiviati su una Storage Area Network (SAN) presso la sede del CUAD ove viene operato un backup multiplo su librerie DLT. E’ in costruzione un buffer di dati su un NAS ospitato in sede per la necessaria ridondanza, per le operazioni di routine e per la disponibilità dei dati per la ricerca.
Quelli acquisiti nell'area campagna sono archiviati in sistemi NAS (15 TeraB effettivi in RAID 5) per i dati in linea, e trasferiti, come backup, su nastri magnetici (da 330 Gb) ed ottici (Blu-Ray da 25 Gb). I dati geochimici acquisiti dalla sezione di Palermo, in considerazione della bassa frequenza di acquisizione, vengono archiviati su due database gemelli (per ragioni di ridondanza) di cui viene effettuato un backup settimanale.

La distribuzione dei dati interni avviene attraverso portali Web intranet dove è possibile reperire le informazioni di dettaglio. All'esterno il portale Internet veicola le informazioni, mentre siti ad accesso riservato forniscono informazioni in tempo reale al Dipartimento di Protezione Civile.

Sale di monitoraggio
Rappresentano l'ultimo anello del sistema di monitoraggio.
La sala di monitoraggio H24/7 dell'OV-NA è in fase di ristrutturazione. E' previsto un ampliamento dei sistemi di controllo sia dei parametri monitorati che della funzionalità dei sistemi di acquisizione, trasmissione ed analisi dei dati.
La sala H24/7 di Catania, in caso di necessità (ad esempio per problemi di trasferimento dati dal CUAD) può essere trasferita in forma ridotta presso la sede del CUAD. Nelle sale si svolge il servizio di sorveglianza dove i turnisti hanno computer per analisi in post-processamento e sistemi di visualizzazione dell'informazione su videowall.

Gestione ed operatività del sistema di monitoraggio
Così come indicato per il monitoraggio sismico, il mantenimento del sistema di sorveglianza dei vulcani attivi richiede costi per la gestione e l'operatività dell'infrastruttura le cui voci principali sono le seguenti:
- contratti di locazione dei siti strumentati;
- contratti di connettività per la trasmissione dei dati;
- contratti o convenzioni con altri Enti o Università;
- contratti di assistenza HW e SW per server dedicati all'acquisizione, elaborazione, visualizzazione e distribuzione dati;
- contratti di assistenza per le strumentazioni di laboratorio dedicate alla sorveglianza vulcanica;
- licenze SW per le analisi dati;
- autovetture e mezzi speciali per il campionamento, le misure di campagna e la manutenzione ordinaria e straordinaria delle reti;
- attrezzatura per i laboratori e dispositivi per la sicurezza in laboratorio ed in campagna per il personale che deve effettuare le misure di campagna, i campionamenti e la manutenzione delle reti;
- materiale di consumo per laboratori analisi fluidi, rocce e ceneri vulcaniche,
- cancelleria e materiale di consumo vario;
- personale impegnato nella gestione delle reti;
- personale impegnato nella manutenzione delle reti;
- personale impegnato nei turni di sorveglianza;
- personale impegnato nella elaborazione dati.

Manutenzione ordinaria e straordinaria del sistema di monitoraggio
Strumentazioni di campagna e di laboratorio per le indagini discrete - I laboratori INGV utilizzati per scopi di monitoraggio (analisi di fluidi fumarolici, falde acquifere, rocce e ceneri vulcaniche) richiedono una costante attenzione al fine di produrre dati di elevata qualità e precisione. In molti casi, le manutenzioni, in particolare per quelle ordinarie, vengono svolte da personale INGV formatosi opportuno. In altri casi si è costretti a ricorrere a personale esterno attraverso contratti di manutenzioni o richieste di intervento con costi considerabili.
La manutenzione ordinaria riguarda anche strumentazioni per le misure dirette di parametri chimici (Spettrofotometri IR), fisici e chimico-fisici (T, pH, Conducibilità elettrica) realizzate dall'INGV, delle vetrerie per i campionamenti, la sostituzione di colonne cromatografiche, gli eluenti per le analisi, ecc.
Reti di monitoraggio - La manutenzione ordinaria e straordinaria delle reti di monitoraggio viene svolta interamente da personale INGV e consiste in verifiche delle significatività dei siti, delle infrastrutture dei siti, dei sistemi di trasmissione dati, della qualità dei dati, dei sistemi di visualizzazione, elaborazione e storage.
Le attività di manutenzione dei sistemi di trasmissione dati dipendono fortemente dalla tipologia dei sistemi stessi. Nel caso di ponti radio oltre a quanto indicato per i siti di misura, si verificano gli allineamenti delle parabole, delle antenne ed i livelli dei segnali; nel caso di segnali trasferiti
attraverso internet o WiFi, si verifica l'ampiezza di banda disponibile in relazione al traffico.

Per le infrastrutture remote (siti di misura), le azioni che generalmente vengono svolte consistono in: a) pulizia del sito (taglio dell'erba e rimozione di fango, detriti ed eventualmente di sublimati depositati da gas vulcanici); b) ripristino delle strutture di protezione delle strumentazioni; c) sostituzione di parti soggette ad usura (fili, batterie, pompe, tubazioni e cavi esposti); d) verifica degli orientamenti dei sensori meteo, pannelli fotovoltaici e generatori eolici.

Anche nel caso della verifica della qualità dei dati vengono utilizzati sistemi differenti (anche automatici) in relazione alla tipologia di dato (segnale sismico, geodetic, flusso di CO₂, etc). Per il raggiungimento di questo obiettivo nelle sale operative e/o di monitoraggio periodicamente vengono svolti test che verificano l'intero processo di acquisizione, dalla misura del segnale, al trasferimento presso le sale, alla memorizzazione, elaborazione, visualizzazione ed allertamento del personale di sala, valutando anche le capacità delle varie componenti anche in relazione all'ampliamento delle reti e del numero dei parametri monitorati.

A differenza della manutenzione ordinaria, che viene svolta con cadenza programmata in relazione alla tipologia della rete, allo stato di attività del sistema ed alle condizioni meteo, gli interventi straordinari vengono svolti in seguito a guasti accidentali di una o più componenti del sistema osservativo provocati da fulmini, vandalismi, ecc. Di norma, tali interventi vengono effettuati entro breve tempo dalla segnalazione a meno che l'intervento riguardi siti difficilmente accessibili, quali la sommità dello Stromboli e dell'Etna, per cui è necessario attendere condizioni meteo favorevoli e/o richiedere l'accompagnamento di guide autorizzate o l'uso dell'elicottero in casi estremi. La manutenzione prevede anche il controllo e la riparazione (quando possibile) delle parti soggette a guasto in modo da riutilizzare il componente ed effettuare una statistica dei guasti allo scopo di migliorare il sistema nei suoi vari aspetti.

Strumenti di trasmissione dei dati di monitoraggio

L'INGV assicura un sistema di condivisione delle informazioni in tempo reale che, congiuntamente ai comunicati e alle valutazioni sui fenomeni eruttivi fornite dall'INGV stesso, fornisce al DPC le informazioni disponibili per la valutazione del livello di criticità dei vulcani italiani.

Il sistema prevede una pagina web ad accesso riservato per il DPC, su uno o più server dell'INGV, tramite cui si accede ai parametri, ritenuti più significativi ai fini di protezione civile ed aggiornati in tempo reale.

Di seguito sono indicate le principali tipologie di dati che devono essere rappresentati attraverso l'interfaccia di consultazione web.

A) Stromboli

Sismicità:
- Segnale sismico registrato da alcune stazioni di riferimento (almeno 2 stazioni);
- Andamento dell'ampiezza del tremore vulcanico calcolata tramite una stazione di riferimento in finestre temporali selezionabili e indicazione di livelli di ampiezza (ad es. bassa, media e alta);
- Mappe 3D (epicentrali e sezioni ipocentrali) delle sorgenti dei segnali sismici localizzabili

Deformazioni:
- Andamento temporale di alcuni segnali rappresentativi di deformazione misurati dalle varie reti installate;

Geochimica:
- Andamento temporale dei flussi diffusi di CO₂ nei suoli (due siti)
- Andamento del rapporto C/S nel plume

Sorveglianza visiva:
- Immagini in tempo reale e registrate da telecamere nei visibile e nel termico;
- Immagini satellitari acquisite dai sensori AVHRR;

B) Etna

Sismicità:
- Segnale sismico registrato da alcune stazioni di riferimento (almeno 4 stazioni);
- Andamento dell'ampiezza del tremore vulcanico calcolato attraverso una stazione di riferimento in finestre temporali selezionabili con indicazione di livelli di ampiezza (ad es. bassa, media e alta);
• Mappe 3D epicentrali e sezioni ipocentrali degli eventi sismici con magnitudo uguale e maggiore a quelle di soglia (Tabella 5);
• Elenco degli eventi con relativa localizzazione, quando determinabile, e valore di magnitudo;
• Andamento temporale (frequenza di accadimento) della sismicità e energia associata (strain release).

Deformazioni:
• Andamento temporale di alcuni segnali rappresentativi di deformazione misurati dalle varie reti installate.

Infrasuono:
• Andamento dell’ampiezza del tremore infrasonico con indicazione di livelli di ampiezza (ad es. bassa, media e alta rapportata al tipo di attività vulcanica) e localizzazione della sorgente;

Radar:
• Segnale della stazione di riferimento in area Montagnola con indicazione di livelli di ampiezza (ad es. bassa, media e alta rapportata al tipo di attività vulcanica);

Geochimica:
• Andamento temporale dei flussi diffusi di CO₂ nei suoli (due siti);
• Andamento temporale di alcuni parametri chimico-fisici rilevati nella falda (due siti).

Sorveglianza visiva:
• Immagini in tempo reale e registrate da telecamere nel visibile e nel termico.

Simulazioni:
• Mappe di previsione della distribuzione di ceneri vulcaniche (anche in formato vettoriale) in atmosfera e al suolo sulla base dei dati meteo e mappe di pericolosità da invasione di colate laviche.

Dati EO:
• Immagini satellitari acquisite dai sensori AVHRR.

C) Vulcano

Sismicità:
• Segnale sismico registrato da alcune stazioni di riferimento (almeno 2 stazioni più una sull'isola di Lipari);
• Mappe 3D epicentrali e sezioni ipocentrali di eventi sismici con magnitudo uguale e maggiore a quelle di soglia (Tabella 5);
• Elenco degli eventi con relativa localizzazione, quando determinabile, e valore di magnitudo;
• Andamento temporale (frequenza di accadimento) della sismicità e energia associata (strain release).

Deformazioni:
• Andamento temporale dei segnali di deformazione misurati dalle varie reti installate.

Geochimica:
• Andamento temporale della temperatura fumarolica (due siti);
• Andamento temporale del flusso di CO₂ diffuso dal suolo (due siti);
• Andamento temporale dei parametri fisico-chimici più significativi rilevati in falda (un sito)

Sorveglianza visiva:
• Immagini in tempo reale e registrate da telecamere nel visibile e nel termico.

Dati EO:
• Immagini satellitari acquisite dai sensori AVHRR.

D) Vesuvio, Campi Flegrei e Ischia

Sismicità:
• Segnali sismici delle stazioni più significative per il Vesuvio, Campi Flegrei e Ischia (almeno 3 per area);
• Mappe 3D epicentrali e sezioni ipocentrali di eventi sismici con magnitudo uguale e maggiore a quelle di soglia, quando calcolabile (Tabella 5);
• Elenco degli eventi con relativa localizzazione, quando determinabile, e valore di magnitudo;
• Andamento temporale (frequenza di accadimento) della sismicità e energia associata (strain release) relativo a periodi diversi.

Deformazioni:
• Andamento temporale delle deformazioni misurate per ciascun complesso vulcanico.

Geochimica:
• Andamento temporale dei parametri geochimici più significativi rilevati in modo automatico nelle fumarole, al suolo, nonché in falda per ciascun complesso vulcanico.

Simulazioni:
• Mappe di previsione della distribuzione di ceneri vulcaniche (anche in formato vettoriale) in atmosfera e al suolo sulla base dei dati meteo e mappe di pericolosità da invasione di colate piroclastiche.

Dati EO:
• Immagini satellitari acquisite dai sensori AVHRR.
Appendice A3. STANDARD PER I FORMATI DEI DATI

Con riferimento alla disponibilità dei dati, trattata al punto 2. del presente allegato, e al sistema di condivisione delle informazioni associato al servizio di sorveglianza, descritto al punto 3. dello stesso, si specifica quanto segue.

Per quanto riguarda Bollettini, Comunicati e Relazioni, i file devono essere inviati in formato pdf non protetto.

Per quanto concerne i dati cartografici, i formati sono specificati qui di seguito.

<table>
<thead>
<tr>
<th>Dati</th>
<th>Formato</th>
<th>Servizio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster</td>
<td>tiff georiferito</td>
<td>WCS (Web Coverage Service)</td>
</tr>
<tr>
<td>Vettoriali</td>
<td>shape file (*)</td>
<td>WFS (Web Coverage Service)</td>
</tr>
<tr>
<td>Matrici</td>
<td>grid di Esri (*) ascii</td>
<td>WCS (Web Coverage Service)</td>
</tr>
<tr>
<td>Alfanumerici*</td>
<td>xls dbf</td>
<td>XML (eXtensible Markup Language)</td>
</tr>
<tr>
<td>Mappe</td>
<td>tiff georiferito</td>
<td>WMS (Web Map Service)</td>
</tr>
<tr>
<td>Metadati</td>
<td>XML</td>
<td>CS-W (Catalogue Web Service)</td>
</tr>
</tbody>
</table>

* Si intendono quelle tabelle in cui i dati tabellari non siano elaborazioni destinate a relazioni, ma siano valori da consultare in sistemi di supporto alla decisione (come i GIS) o in sistemi automatici di monitoraggio e controllo.

(*) Questi formati saranno forniti soltanto se i files relativi potranno essere realizzati anche con programmi non-commerciali.

I dati geografici e i relativi servizi esposti dovranno essere georiferiti utilizzando i seguenti sistemi di riferimento:
WGS84 geografico (EPSG4326)
WGS84 di Google (EPSG900913)
EPSG32632 (WGS 84 - UTM 32N)
EPSG32633 (WGS 84 - UTM 33N)

Il flusso dei dati cartografici tra DPC e INGV avviene attraverso siti ftp dedicati, nonché attraverso server dedicati per l’esposizione dei servizi WMS, WFS, WCS e CWS.
Per migliorare l’informazione sui prodotti forniti al CFC, tutti i dati georiferiti devono essere corredati da metadati.

Appendice A4 - CONTATTI

DPC

Elenco 1 – Riferimenti per gli SMS Aut nella matrice decisionale delle comunicazioni degli eventi sismici

<table>
<thead>
<tr>
<th>Direttore Ufficio SIV Commissione Paritetica DPC-INGV</th>
<th>Mauro Dolce</th>
<th>336 731879</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIV - Servizio Vulnerabilità, normativa tecnica e interventi di mitigazione</td>
<td>Giacomo Di Pasquale</td>
<td>335 7234748</td>
</tr>
<tr>
<td>SIV - Servizio Gestione tecnica post-evento</td>
<td>Paolo Marsan</td>
<td>335 7390608</td>
</tr>
<tr>
<td>SIV - Servizio Monitoraggio sismico del territorio</td>
<td>Mario Nicoletti</td>
<td>335 7234749</td>
</tr>
<tr>
<td>SIV - Servizio Pericolosità e rischio sismico</td>
<td>Fabio Sabetta</td>
<td>329 4104389</td>
</tr>
<tr>
<td>Commissione Paritetica DPC-INGV</td>
<td>Chiara Cardaci</td>
<td>329 4104380</td>
</tr>
<tr>
<td>Commissione Paritetica DPC-INGV</td>
<td>Daniela Di Bacci</td>
<td>335 7390607</td>
</tr>
</tbody>
</table>

Elenco 2 – Riferimenti per gli SMS Rev nella matrice decisionale delle comunicazioni degli eventi sismici

<table>
<thead>
<tr>
<th>Direttore Ufficio SIV Commissione Paritetica DPC-INGV</th>
<th>Mauro Dolce</th>
<th>336 731879</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIV - Servizio Vulnerabilità, normativa tecnica e interventi di mitigazione</td>
<td>Giacomo Di Pasquale</td>
<td>335 7234748</td>
</tr>
<tr>
<td>SIV - Servizio Gestione tecnica post-evento</td>
<td>Paolo Marsan</td>
<td>335 7390608</td>
</tr>
<tr>
<td>SIV - Servizio Monitoraggio sismico del territorio</td>
<td>Mario Nicoletti</td>
<td>335 7234749</td>
</tr>
<tr>
<td>SIV - Servizio Pericolosità e rischio sismico</td>
<td>Fabio Sabetta</td>
<td>329 4104389</td>
</tr>
<tr>
<td>Commissione Paritetica DPC-INGV</td>
<td>Chiara Cardaci</td>
<td>329 4104380</td>
</tr>
<tr>
<td>Commissione Paritetica DPC-INGV</td>
<td>Daniela Di Bacci</td>
<td>335 7390607</td>
</tr>
<tr>
<td>EME – Dirigente Sala Situazione Italia</td>
<td>Roberto Gulli</td>
<td>335 6412145</td>
</tr>
</tbody>
</table>

Centro Funzionale Centrale – Settore Rischio Sismico

E-mail: centrofunzionale.sismico@protezione civile.it

Centro Funzionale Centrale – Settore Rischio Vulcanico

E-mail: centrofunzionale.vulcanico@protezione civile.it

Sito web per la condivisione documentale del Sistema d’Allertamento Nazionale

http://cfc.protezione civile.it/vdisk

Sala Situazione Italia

Tramite telefono punto-punto con la Sala Sismica INGV, oppure linea urbana 06 68202265 / 06 68202266

E-mail: salaoperativa@protezione civile.it

Link al sito del DPC

www.protezione civile.it
INGV

Terremoti in Italia
Centro Nazionale Terremoti
Direttore 335 6272046
Direttore del Funzionario in turno 335 7436976
Sala Sismica 06 51860355
 06 51860354
Sala Sismica cell. 345 3124408

Vulcani campani
Osservatorio Vesuviano
Direttore 335 416941
Sala Monitoraggio 081 6108300
Sala monitoraggio cell. 345 3119577

Vulcani siciliani
Osservatorio Etneo
Direttore 335 6406672
RUF Sala Operativa 335 6406680
Reperibile Vulcanologo 335 6406682
Reperibile Sismologo 335 6406681
Sala Operativa 095 7165871
 095 7165881
Sala Operativa cell. 345 4319661

Sezione di Palermo
Direttore 335 7638768
RUF Sorveglianza Vulcanica 334 6499062
RUP Programma triennale di estensione e
potenziamento delle reti vulcaniche e sismiche della
Sicilia
Responsabile di Area 340 7722835

Commissione Paritetica DPC-INGV

Presidente INGV
Domenico Giardini 342 3552175

Referente Terremoti
Alessandro Amato 335 7436974

Referente Vulcani
Giovanni Macedonio 333 7441787
Per l'ISTITUTO NAZIONALE
DI GEOFISICA E VULCANOLOGIA
Il Presidente
Prof. Domenico GIARDINI

Per il DIPARTIMENTO
DELLA PROTEZIONE CIVILE
Il Dirigente delegato
Prof. Mauro DOLCE

28 FEB. 2012

Roma, il ____________________